scholarly journals Effect of Jasmonates Differed at Fruit Ripening Stages on 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase Gene Expression in Pears

2007 ◽  
Vol 132 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Satoru Kondo ◽  
Hiroko Yamada ◽  
Sutthiwal Setha

The effects of n-propyl dihydrojasmonate (PDJ), which is a jasmonic acid derivative, on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase activities, their gene expressions, and ethylene productions in ‘La France’ pears (Pyrus communis L.) were investigated. The fruit was harvested 156 days after full bloom, stored at 4 °C for 15 days, ripened at 20 °C, and then dipped into 0.39 mm PDJ solution at the preclimacteric stage (0 day of ripening at 20 °C) or the climacteric stage (9 days of ripening at 20 °C). In the skin of the PDJ-treated fruit at the preclimacteric stage, the expressions of ACC synthase (ACS)1 and ACC oxidase (ACO)1 were higher than the expressions of those in the untreated control. Ethylene production also increased in the PDJ-treated fruit. In contrast, the accumulation of the ACS1 messenger RNA (mRNA) levels in the skin and an increase of ethylene production were observed in the untreated control fruit at the climacteric stage, although the levels of mRNAs hybridized with ACO1 were not different between the PDJ-treated fruit and untreated control. The endogenous jasmonic acid levels in the skin increased in the PDJ-treated fruit regardless of the application times of PDJ. These results indicate that ACS1 may be an ACC synthase gene that is induced by jasmonates in pears, and that system 2 ethylene may be regulated by jasmonates.

HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1074-1078 ◽  
Author(s):  
Pankaj Kumar Bhowmik ◽  
Toshiyuki Matsui

The molecular and enzymatic changes that follow harvesting of asparagus are important aspects for postharvest deterioration. To define the factors contributing to postharvest deterioration, the early changes in ethylene production and the activities and expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, and phenylalanine ammonia-lyase (PAL) were studied in whole spears and in excised top and bottom portions. As a result of wounding, ethylene production was found higher in both top and bottom portions compared with whole spears but followed the same trend reaching the peak at 16 hours after harvest. ACC synthase was rapidly induced in excised top portions but no significant ACC synthase activity was observed in excised bottom portions. In top portions, ACC synthase reached a peak 8 hours after harvest and thereafter started to decline. In contrast to ACC synthase, ACC oxidase was induced markedly in both top and bottom portions and remained high until 16 hours after excision. On the other hand, PAL greatly increased in activity in bottom portions but not in excised tops. Northern blot analysis showed that increased mRNA levels coincided well with the excision-promoted increases in enzyme activity and ethylene production.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1454-1460 ◽  
Author(s):  
Rongcai Yuan ◽  
Jianguo Li

Effects of naphthaleneacetic acid (NAA), aminoethoxyvinylglycine (AVG), and sprayable 1-methylcyclopropene (1-MCP) alone or in combination on fruit ethylene production, preharvest fruit drop, fruit quality, and fruit maturation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). 1-MCP and AVG + NAA, when applied 15 days before anticipated harvest (DBAH) for untreated control trees, more effectively delayed preharvest fruit drop than AVG or NAA used alone. However, there was no significant difference in ethylene production between fruit treated with 1-MCP or AVG + NAA and those treated by AVG. Two applications of NAA increased fruit ethylene production and fruit softening, whereas AVG inhibited NAA-enhanced fruit ethylene production and fruit softening. There was no significant difference in fruit ethylene production, fruit firmness, and fruit drop control between one and two applications of 1-MCP. The concentrations of 1-MCP did not affect the efficacy of 1-MCP when applied 15 DBAH, but high concentration of 1-MCP more effectively delayed preharvest fruit drop than low concentration of 1-MCP when applied 7 DBAH. Both AVG and 1-MCP suppressed expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase gene MdACS1, ACC oxidase gene MdACO1, and polygalacturonase gene MdPG1 in fruit. Expression of ACS5A and MdACO1 but not MdACS1 in fruit abscission zones was decreased by AVG and 1-MCP. 1-MCP more effectively suppressed expression of MdPG2 in fruit abscission zones than AVG alone.


2008 ◽  
Vol 133 (6) ◽  
pp. 727-734 ◽  
Author(s):  
Hong Zhu ◽  
Eric P. Beers ◽  
Rongcai Yuan

Effects of naphthaleneacetic acid (NAA) and aminoethoxyvinylglycine (AVG) on young fruit abscission, leaf and fruit ethylene production, and expression of genes related to ethylene biosynthesis and cell wall degradation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). NAA at 15 mg·L−1 increased fruit abscission and ethylene production of leaves and fruit when applied at the 11-mm stage of fruit development, whereas AVG, an inhibitor of ethylene biosynthesis, at 250 mg·L−1 reduced NAA-induced fruit abscission and ethylene production of leaves and fruit. NAA also increased expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (MdACS5A and MdACS5B), ACC oxidase gene (MdACO1), and ethylene receptor genes (MdETR1a, MdETR1b, MdETR2, MdERS1, and MdERS2) in fruit cortex and fruit abscission zones. However, AVG reduced NAA-induced expression of these genes except for MdERS2 in fruit abscission zones. NAA increased expression of the polygalacturonase gene MdPG2 in fruit abscission zones but not in fruit cortex, whereas AVG reduced NAA-enhanced expression of MdPG2 in fruit abscission zones. The expression of β-1,4-glucanase gene MdCel1 in fruit abscission zones was decreased by NAA but was unaffected by AVG. Our results suggest that ethylene biosynthesis, ethylene perception, and the MdPG2 gene are involved in young fruit abscission caused by NAA.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandhya Rani Kuanar ◽  
Kutubuddin Ali Molla ◽  
Krishnendu Chattopadhyay ◽  
Ramani Kumar Sarkar ◽  
Pravat Kumar Mohapatra

AbstractIn the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.


1995 ◽  
Author(s):  
William Woodson ◽  
Shimon Mayak ◽  
Haim Rabinowitch

The senescence of carnation (Dianthus caryophyllus L.) flowers is associated with increased production of the phytohormone ethylene, which in turn serves to initiate and regulate the processes involved in programmed petal death. We investigated the regulation of ethylene production and petal senescence in carnation. Several carnation genotypes were identified that exhibited extended vase-life in comparison to flowers from typical commercial cultivars. The capacity of these genotypes to produce ethylene during postharvest vase-life and to respond to exogenous ethylene was investigated. Several genotypes, represented by 'Sandrosa' and 87-37G produced little ethylene durig their postharvest vase-life and as a result failed to exhibit the symptoms (in-rolling and wilting) typical of flowers producing elevated levels of ethylene. These genotypes were further separated by their capacity to respond to exogenous ethylene by both increased ethylene synthesis and premature petal senescence. In one case a genotype (799) was identified that was not capable of responding to exogenous ethylene by either increased ethylene production or premature petal senescence. The regulation of ethylene production during petal senescence was investigated both at the enzyme and gene levels. A full length cDNA was identified for the petal senescence-related ACC synthase gene. Utilizing this, and other ethylene biosynthetic pathway cDNA probes, an increase in both ACC synthase and ACC oxidase mRNAs were detected following ethylene treatment. An increase in ACC oxidase mRNA and enzyme activity was detected within 2-3 h following ethylene treatment, indicating the expression of this gene is an early response to ethylene. An investigation into the expression of novel proteins during petal senescence revealed a number of polypeptides increased in abundance and possibly play a role in the regulation or biochemical processes of senescence. One polypeptide of 70 kDa was identified as being encoded by the previously characterized gene SR12 and possibly represents a b-galactosidase involved in the remobilization of carbohydrates during senescence.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 460B-460
Author(s):  
Sven Verlinden ◽  
William R. Woodson

High-temperature treatments can be used for disinfestation of a variety of horticultural crops. Carnation flowers were subjected to a heat treatment in order to determine if it is a viable option for disinfestation of this crop. Flowers were exposed to 45°C for 24 hr in the dark, while control flowers were held at RT for 24 hr in the dark. Subsequently, the flowers were held at RT in the light and monitored for ethylene production, an indicator of imminent floral senescence. In the heat-treated flowers, the ethylene climacteric occurred at 96 hr after the heat treatment, a delay of 12 hr when compared to the control. Peak ethylene production was decreased by 25% to 30% in heat-treated flowers. Northern blot analysis of the ethylene biosynthetic pathway genes, ACC synthase, and ACC oxidase, showed that the expression of these genes is delayed by 8 to 16 hr in heat-treated flowers. This indicates that the delay and decrease in ethylene production is at least, in part, due to a delay or reduction in the expression of these genes. Further investigation revealed a decreased responsiveness of the petals to ethylene. Petals from heat-treated and control flowers were exposed to 1 ppm ethylene for 0, 0.5, 1, 2, 4, 6, 12, and 32 hr. The heat-treated petals again showed a delay and a decrease in maximum ethylene production after exposure to ethylene. A delay in expression of ACC synthase and ACC oxidase was also observed. The beneficial effects of exposing carnation flowers to high temperatures, a delay in ethylene production, and reduced responsiveness to ethylene, suggest that heat treatments could be used for disinfestation of this crop.


2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


1991 ◽  
Author(s):  
Sharman O'Neill ◽  
Abraham Halevy ◽  
Amihud Borochov

The project investigated the molecular genetic and biochemical basis of pollination-induced senescence of Phalaenopsis flowers. This experimental system offered unique advantages in that senescence is strictly regulated by pollination, providing the basis to experimentally initiate and synchronize senescence in populations of flowers. The postpollination syndrome in the Phalaenopsis orchid system was dissected by investigating the temporal and spatial regulation of ACC synthase gene expression. In the stigma, pollen-borne auxin induces the expression of the auxin-regulated ACC synthase (PS-ACS2) gene, resulting in ACC synthesis within 1 h following pollination. Newly formed ACC is oxidized by basal constitutive ACC oxidase to ethylene, which then induces the expression of the ethylene-regulated ACC synthase(PS-ACS1) and oxidase (ACO1) genes for further autocatalytic production of ethylene. It is speculated that during the 6-h period following pollination, emasculation leads to the production or release of a sensitivity factor that sensitizes the cells of the stigma to ethylene. ACC and ethylene molecules are translocated from the stigma to the labellum and perianth where ethylene induces the expression of PS-ACS1 and ACO1 resulting in an increased production of ACC and ethylene. Organ-localized ethylene is responsible for inrolling and senescence of the labellum and perianth. The regulation of ethylene sensitivity and signal transduction events in pollinated flowers was also investigated. The increase in ethylene sensitivity appeared in both the flower column and the perianth, and was detected as early as 4 h after pollination. The increase in ethylene sensitivity following pollination was not dependent on endogenous ethylene production. Application of linoleic and linoleic acids to Phalaenopsis and Dendrobium flowers enhanced their senescence and promoted ethylene production. Several major lipoxygenase pathway products including JA-ME, traumatic acid, trans-2-hexenal and cis-3-hexenol, also enhanced flower senescence. However, lipoxygenase appears to not be directly involved in the endogenous regulation of pollination-induced Phalaenopsis and Dendrobium flower senescence. The data suggest that short-chain saturated fatty acids may be the ethylene "sensitivity factors" produced following pollination, and that their mode of action involves a decrease in the order of specific regions i the membrane lipid bilayer, consequently altering ethylene action. Examination of potential signal transduction intermediates indicate a direct involvement of GTP-binding proteins, calcium ions and protein phosphorylation in the cellular signal transduction response to ethylene following pollination. Modulations of cytosolic calcium levels allowed us to modify the flowers responsiveness to ethylene.


2014 ◽  
Vol 56 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Emilia Wilmowicz ◽  
Kamil Frankowski ◽  
Agata Kućko ◽  
Jacek Kęsy ◽  
Jan Kopcewicz

Abstract The study examined the influence of light and auxin on the transcription level of PnACO3, a gene involved in ethylene production, in relation to the inhibitory effect of ethylene on flower induction in the short-day plant Pharbitis nil (=Ipomoea nil). Exogenous auxin was shown to increase the level of PnACO3 mRNA, with the effect depending on the experimental conditions. Light did not affect the level of PnACO3 mRNA. Applying auxin to seedling cotyledons at the beginning of inductive night boosted PnACO3 transcriptional activity even threefold during the next few hours, supporting our previous suggestion that the inhibitory effect of auxin on P. nil flowering results from its stimulatory effect on ethylene production.


Sign in / Sign up

Export Citation Format

Share Document