scholarly journals Comparative proteomics reveals unexpected quantitative phosphorylation differences linked to platelet activation state

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. J. Schmidt ◽  
C. M. Reumiller ◽  
H. Ercan ◽  
U. Resch ◽  
E. Butt ◽  
...  

AbstractThere is a need to assess platelet activation in patients with thrombotic disorders. P-selectin and activated integrin αIIbβ3 are usually quantified by flow cytometry to measure platelet activation. Monitoring changes in vasodilator-stimulated phosphoprotein (VASP) phosphorylation is an established method to determine the platelet-reactivity status. To study disruptions of platelet reactivity more comprehensively, we compared the human non-secretory platelet proteome after in-vitro -activation and –inhibition with their respective untreated controls using unbiased fluorescence two-dimensional differential in-gel electrophoresis. The non-secretory platelet proteome was more severely affected during inhibition than during activation. Strikingly, while VASP reached a 1.3-fold increase in phosphorylation levels in inhibited platelets, other protein kinase A targets showed several-fold stronger inhibition-induced phosphorylation levels, including LIM and SH3 domain protein 1 (6.7-fold), Src kinase-associated phosphoprotein 2 (4.6-fold), and Ras-related protein Rap1b (4.1-fold). Moreover, phosphorylation of integrin-linked protein kinase (ILK) and pleckstrin (PLEK) species was associated with P-selectin surface expression. The discrimination power between activation and inhibition was more pronounced for dephosphorylated ILK (3.79 Cohen’s d effect size) and phosphorylated PLEK (3.77) species than for P-selectin (2.35). These data reveal new insights into the quantitative changes of the platelet reactivity proteome and suggest powerful alternatives to characterise their activation and inactivation potential.

1985 ◽  
Vol 54 (04) ◽  
pp. 842-848 ◽  
Author(s):  
Kandice Kottke-Marchant ◽  
James M Anderson ◽  
Albert Rabinovitch ◽  
Richard A Huskey ◽  
Roger Herzig

SummaryHeparin is known to affect platelet function in vitro, but little is known about the effect of heparin on the interaction of platelets with polymer surfaces in general, and vascular graft materials in particular. For this reason, the effect of heparin vs. citrate anticoagulation on the interaction of platelets with the vascular graft materials expanded polytetrafluoroethylene (ePTFE), Dacron Bionit (DB) and preclotted Dacron Bionit (DB/PC) was studied in a recirculating, in vitro perfusion system. Platelet activation, as shown by a decrease in platelet count, an increase in platelet release and a decrease in platelet aggregation, was observed for all vascular graft materials tested using heparin and was greater for Dacron and preclotted Dacron than for ePTFE. Significant differences between heparin and citrate anticoagulation were seen for platelet release, platelet aggregation and the relative ranking of material platelet-reactivity. However, the trends and time course of platelet activation were similar with both heparin and citrate for the materials tested.


Parasitology ◽  
1995 ◽  
Vol 111 (3) ◽  
pp. 275-287 ◽  
Author(s):  
E. M. B. Saraiva ◽  
P. F. P. Pimenta ◽  
T. N. Brodin ◽  
E. Rowton ◽  
G. B. Modi ◽  
...  

SUMMARYStage-specific molecular and morphogenic markers were used to follow the kinetics of appearance, number, and position of metacyclic promastigotes developing during the course ofL. majorinfection in a natural vector,Phlebotomus papatasi. Expression of surface lipophosphoglycan (LPG) on transformed promastigotes was delayed until the appearance of nectomonad forms on day 3, and continued to be abundantly expressed by all promastigotes thereafter. An epitope associate with arabinose substitution of LPG side-chain oligosaccharides, identified by its differential expression by metacyclics invitro, was detected on the surface of a low proportion of midgut promastigotes beginning on day 5, and on up to 60% of promatigotes on days 10 and 15. In contrast 100% of the parasites egested from the mouthparts during forced feeding of 15 day infected flies stained strongly for this epitope. At each time-point, the surface expression of the modified LPG was restricted to morphologically distinguished metacyclic forms. Ultrastructural study of the metacyclic surface revealed an approximate 2-fold increase in the thickness of the surface coat compared to nectomonad forms, suggesting elongation of LPG as occurs during metacyclogenesisin vitro. A metacyclic-associated transcript (MAT-1), another marker identified by its differential expression invitro, also showed selective expression by promastigotes in the fly, and was used inin situhybridization studies to demonstrate the positioning of metacyclics in the anterior gut.


Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 154-162 ◽  
Author(s):  
J Valles ◽  
MT Santos ◽  
J Aznar ◽  
AJ Marcus ◽  
V Martinez-Sales ◽  
...  

Abstract Erythrocytes promoted platelet reactivity in a plasma medium, as demonstrated in an in vitro system that independently evaluated the biochemistry of platelet activation and recruitment. The prothrombotic erythrocyte effects were metabolically regulated, as evidenced by lack of activity of ATP-depleted or glutaraldehyde-fixed erythrocytes. They occurred in the absence of cell lysis as verified by lactate dehydrogenase assays, and had an absolute requirement for platelet activation. The presence of erythrocytes induced a twofold increase in platelet thromboxane B2 (TXB2) synthesis upon collagen stimulation, indicating that erythrocytes modulated platelet eicosanoid formation. Cell-free releasates from stimulated platelet-erythrocyte suspensions, which exhibited increased recruiting capacity, contained 6.9-fold more ADP and 4.9-fold more ATP than releasates from stimulated platelets alone. Following aspirin ingestion, TXB2 formation was blocked, but erythrocyte promotion of platelet reactivity persisted at those doses of collagen that reinduced platelet activation. Moreover, when platelet mixtures consisted of as little as 10% obtained before aspirin plus 90% obtained post-aspirin ingestion, significant erythrocyte enhancement of platelet reactivity occurred, even at low agonist concentrations. These erythrocyte effects would decrease the therapeutic potential of inhibition of platelet cyclooxygenase by aspirin. The erythrocyte- induced modulation of platelet biochemistry and function emphasizes the importance of cell-cell interactions in stimulus-response coupling.


Blood ◽  
2020 ◽  
Vol 136 (15) ◽  
pp. 1773-1782 ◽  
Author(s):  
Daniel DeHelian ◽  
Shuchi Gupta ◽  
Jie Wu ◽  
Chelsea Thorsheim ◽  
Brian Estevez ◽  
...  

Abstract G protein–coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor–activating peptide, an increased maximum response to adenosine 5′-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10−/− platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18−/− mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18−/− and RGS10−/−18−/− mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.


1991 ◽  
Vol 278 (2) ◽  
pp. 387-392 ◽  
Author(s):  
W A Khan ◽  
S W Mascarella ◽  
A H Lewin ◽  
C D Wyrick ◽  
F I Carroll ◽  
...  

Sphingosine is a naturally occurring long-chain amino diol with potent inhibitory activity against protein kinase C in vitro and in cell systems. The use of sphingosine as a pharmacological tool to probe the activity of protein kinase C has been hampered by its amphiphilicity, possible contamination of its commercial preparations, and the existence of other targets for its action. To address these problems, high-purity D-erythro-sphingosine was prepared and employed to develop an approach for the use of sphingosine as a pharmacological agent. The addition of synthetic D-erythro-sphingosine to intact human platelets resulted in quick uptake and preferential partitioning into the particulate fraction. It was rapidly metabolized by intact platelets, 60% being degraded within 1 min after addition. Sphingosine was found to be a potent inhibitor of gamma-thrombin-induced aggregation and secretion of washed human platelets. Multiple criteria indicated that this effect is probably mediated through the inhibition of protein kinase C: (1) sphingosine inhibited protein kinase C activity in intact platelets with a similar dose/response to its inhibition of platelet aggregation and secretion; (2) sphingosine inhibited phorbol binding to intact platelets under identical conditions and with a similar dose-dependence; (3) exogenous dioctanoylglycerol overcame sphingosine's inhibition of platelet activation. The effectiveness of sphingosine in inhibiting platelet activation was primarily determined by the ratio of sphingosine to total number of platelets. These data are discussed in relation to a general approach for the use of sphingosine and other parameters for determining biological activities of protein kinase C.


2002 ◽  
Vol 80 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Mark A Deeg ◽  
Rosario F Bowen

Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is present in plasma as an apolipoprotein and as a cell-associated lipase. GPI-PLD mRNA levels are regulated, but it is unclear if posttranslational mechanisms also regulate GPI-PLD function. We examined the effect of protein kinase A phosphorylation on human serum GPI-PLD activity, trypsin activation, and apolipoprotein AI binding. Protein kinase A phosphorylation did not activate GPI-PLD activity in vitro, nor did phosphorylated GPI-PLD cleave a GPI-anchored protein from intact porcine erythrocytes. Trypsin cleaves the C-terminal β propeller of purified human serum GPI-PLD to generate three immunodetectable fragments (75, 28, and 18 kDa) in association with a 12-fold increase in enzyme activity. After phosphorylation, the amounts of 28- and 18-kDa fragments were markedly decreased with trypsin treatment, and activity was only increased five-fold. Phosphorylation also inhibits binding of GPI-PLD to apolipoprotein AI. These data are the first demonstrating that phosphorylation may regulate GPI-PLD interaction with other proteins.Key words: apolipoprotein AI, high-density lipoprotein, glycosylphosphatidylinositol, trypsin, phospholipase D.


2021 ◽  
Author(s):  
Bartosz Skalski ◽  
Joanna Rywaniak ◽  
Jerzy Żuchowski ◽  
Anna Stochmal ◽  
Beata Olas

Abstract Uncontrolled blood platelet activation is an important risk factor of cardiovascular disease (CVDs). Various studies on phenolic compounds indicate that they have a protective effect on the cardiovascular system through different mechanisms, including the reduction of blood platelet activation. One of the plants that is particularly rich in phenolic compounds is sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson). The aim of the present study in vitro was to determine the anti-platelet properties of crude extracts isolated from leaves and twigs of E. rhamnoides (L.) A. Nelson in whole blood using flow cytometric and total thrombus-formation analysis system (T-TAS). The aim of our study was also analyze of blood platelet proteoms in the presence of different sea buckthorn extracts. A significant new finding is a decrease surface expression of P-selectin on blood platelets stimulated by 10 µM ADP and 10 µg/mL collagen, and a decrease surface expression of GPIIb/IIIa active complex on non-activated platelets and platelets stimulated by 10 µM ADP and 10 µg/mL collagen in the presence of sea buckthorn leaf extract (especially at the concentration 50 µg/mL). The twig extract also displayed antiplatelet potential. However, this activity was higher in the leaf extract than in the twig extract in whole blood. In addition, our present findings clearly demonstrate that investigated plant extracts have anticoagulant properties (measured by T-TAS). Therefore, the two tested extracts may be promising candidates for the natural anti-platelet and anticoagulant supplements.


2020 ◽  
Vol 21 (22) ◽  
pp. 8851
Author(s):  
Claudia Pielsticker ◽  
Martin F. Brodde ◽  
Lisa Raum ◽  
Kerstin Jurk ◽  
Beate E. Kehrel

Inflammatory processes are triggered by the fibrinolytic enzyme plasmin. Tissue-type plasminogen activator, which cleaves plasminogen to plasmin, can be activated by the cross-β-structure of misfolded proteins. Misfolded protein aggregates also represent substrates for plasmin, promoting their degradation, and are potent platelet agonists. However, the regulation of plasmin-mediated platelet activation by misfolded proteins and vice versa is incompletely understood. In this study, we hypothesize that plasmin acts as potent agonist of human platelets in vitro after short-term incubation at room temperature, and that the response to thrombospondin-1 and the bona fide misfolded proteins Eap and SCN−-denatured IgG interfere with plasmin, thereby modulating platelet activation. Plasmin dose-dependently induced CD62P surface expression on, and binding of fibrinogen to, human platelets in the absence/presence of plasma and in citrated whole blood, as analyzed by flow cytometry. Thrombospondin-1 pre-incubated with plasmin enhanced these plasmin-induced platelet responses at low concentration and diminished them at higher dose. Platelet fibrinogen binding was dose-dependently induced by the C-terminal thrombospondin-1 peptide RFYVVMWK, Eap or NaSCN-treated IgG, but diminished in the presence of plasmin. Blocking enzymatically catalyzed thiol-isomerization decreased plasmin-induced platelet responses, suggesting that plasmin activates platelets in a thiol-dependent manner. Thrombospondin-1, depending on the concentration, may act as cofactor or inhibitor of plasmin-induced platelet activation, and plasmin blocks platelet activation induced by misfolded proteins and vice versa, which might be of clinical relevance.


2018 ◽  
Vol 2 (16) ◽  
pp. 2072-2078 ◽  
Author(s):  
Christopher W. Smith ◽  
Zaher Raslan ◽  
Lola Parfitt ◽  
Abdullah O. Khan ◽  
Pushpa Patel ◽  
...  

Key Points Platelet activation in vitro results in a more rapid and greater upregulation of TLT-1 surface expression compared with P-selectin. TLT-1 is more rapidly translocated to the surface of activated platelets than P-selectin during thrombus formation in vivo.


2020 ◽  
Vol 126 (4) ◽  
pp. 486-500 ◽  
Author(s):  
Tobias Petzold ◽  
Manuela Thienel ◽  
Lisa Dannenberg ◽  
Philipp Mourikis ◽  
Carolin Helten ◽  
...  

Rationale: A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. Objective: In this study, we hypothesized that rivaroxaban’s antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. Methods and Results: In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban’s antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban’s anticoagulatory capacity. Conclusions: Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.


Sign in / Sign up

Export Citation Format

Share Document