scholarly journals MeinteR: A framework to prioritize DNA methylation aberrations based on conformational and cis-regulatory element enrichment

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andigoni Malousi ◽  
Sofia Kouidou ◽  
Maria Tsagiopoulou ◽  
Nikos Papakonstantinou ◽  
Emmanouil Bouras ◽  
...  

AbstractDNA methylation studies have been reformed with the advent of single-base resolution arrays and bisulfite sequencing methods, enabling deeper investigation of methylation-mediated mechanisms. In addition to these advancements, numerous bioinformatics tools address important computational challenges, covering DNA methylation calling up to multi-modal interpretative analyses. However, contrary to the analytical frameworks that detect driver mutational signatures, the identification of putatively actionable epigenetic events remains an unmet need. The present work describes a novel computational framework, called MeinteR, that prioritizes critical DNA methylation events based on the following hypothesis: critical aberrations of DNA methylation more likely occur on a genomic substrate that is enriched in cis-acting regulatory elements with distinct structural characteristics, rather than in genomic “deserts”. In this context, the framework incorporates functional cis-elements, e.g. transcription factor binding sites, tentative splice sites, as well as conformational features, such as G-quadruplexes and palindromes, to identify critical epigenetic aberrations with potential implications on transcriptional regulation. The evaluation on multiple, public cancer datasets revealed significant associations between the highest-ranking loci with gene expression and known driver genes, enabling for the first time the computational identification of high impact epigenetic changes based on high-throughput DNA methylation data.

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Lidia A. Daimiel ◽  
María E. Fernández-Suárez ◽  
Sara Rodríguez-Acebes ◽  
Lorena Crespo ◽  
Miguel A. Lasunción ◽  
...  

DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.


2019 ◽  
Vol 20 (8) ◽  
pp. 1845 ◽  
Author(s):  
Vichithra R.B. Liyanage ◽  
Carl O. Olson ◽  
Robby M. Zachariah ◽  
James R. Davie ◽  
Mojgan Rastegar

Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we reported that DNA methylation of six Mecp2 regulatory elements correlated with Mecp2 levels in the brain. We now show that in male brain cells, DNA methylation is significantly correlated with the transcript expression of these two isoforms. We show that both Mecp2 isoforms are highly expressed in male neurons compared to male astrocytes, with Mecp2e1 expressed at higher levels than Mecp2e2. Our data indicate that higher DNA methylation at the Mecp2 regulatory element(s) is associated with lower levels of Mecp2 isoforms in male astrocytes compared to male neurons.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


1990 ◽  
Vol 10 (3) ◽  
pp. 930-938
Author(s):  
G L Semenza ◽  
R C Dureza ◽  
M D Traystman ◽  
J D Gearhart ◽  
S E Antonarakis

Erythropoietin (EPO) is the primary humoral regulator of mammalian erythropoiesis. The single-copy EPO gene is normally expressed in liver and kidney, and increased transcription is induced by anemia or cobalt chloride administration. To identify cis-acting DNA sequences responsible for regulated expression, transgenic mice were generated by microinjection of a 4-kilobase-pair (kb) (tgEPO4) or 10-kb (tgEPO10) cloned DNA fragment containing the human EPO gene, 0.7 kb of 3'-flanking sequence, and either 0.4 or 6 kb of 5'-flanking sequence, respectively. tgEPO4 mice expressed the transgene in liver, where expression was inducible by anemia or cobalt chloride, kidney, where expression was not inducible, and other tissues that do not normally express EPO. Human EPO RNA in tgEPO10 mice was detected only in liver of anemic or cobalt-treated mice. Both tgEPO4 and tgEPO10 mice were polycythemic, demonstrating that the human EPO RNA transcribed in liver is functional. These results suggest that (i) a liver inducibility element maps within 4 kb encompassing the gene, 0.4 kb of 5'-flanking sequence, and 0.7 kb of 3'-flanking sequence; (ii) a negative regulatory element is located between 0.4 and 6 kb 5' to the gene; and (iii) sequences required for inducible kidney expression are located greater than 6 kb 5' or 0.7 kb 3' to the gene. RNase protection analysis revealed that human EPO RNA in anemic transgenic mouse liver and hypoxic human hepatoma cells is initiated from several sites, only a subset of which is utilized in nonanemic transgenic liver and human fetal liver.


1989 ◽  
Vol 9 (5) ◽  
pp. 2228-2232
Author(s):  
C D Trainor ◽  
J D Engel

Molecular genetic analysis of a number of vertebrate erythroid cell-specific genes has identified at least two types of cis-acting regulatory sequences which control the complex developmental pattern of gene expression during erythroid cell maturation. Tissue-specific cellular enhancers have been identified 3' to three erythroid cell-specific genes, and additional regulatory elements have been identified in the promoters of many erythroid genes. We show that the histone H5 enhancer, like the adult beta-globin enhancer, is involved in mediating the developmental induction of histone H5 mRNA as erythroid cells mature. We also describe the preliminary characterization of a tissue-specific regulatory element within the 5' region of the H5 locus and describe investigations of the interaction between this element and the histone H5 enhancer in mediating histone H5 regulation.


Genetics ◽  
1980 ◽  
Vol 95 (4) ◽  
pp. 1001-1011
Author(s):  
R A Norman ◽  
Satya Prakash

ABSTRACT The amylase locus in Drosophila persimilis is polymorphic for allozymes, two of which show associations with naturally occurring chromosome 3 inversions. Amy  1.09 occurs at high frequencies only in Whitney (WT), while the other common arrangements-Standard (ST), Klamath (KL) and Mendocino (MD) —are predominantly Amy  1.00. We have examined numerous strains, representing various electromorphs and inversions, for variation in cis-specific activity expression in both third-instar larvae and adults. Comparisons of these two life stages also allows the survey of developmental variation in amylase activities. The amount of activity variation exceeds electrophoretic variation at this locus. Moreover, this variation is largely nonrandom and reveals more genic divergence among inversions. The 1.00 allozyme of MD is more active than 1.00 KL in larvae and adults and shows a different developmental pattern. The activity of the 1.00 allozyme of KL is greater than 1.00 allozyme of ST in larvae and adults, but these two arrangements have similar developmental patterns. WT 1 with a 1.00 allele is dramatically different from the 1.00 allozymes of other arrangements in its developmental pattern. The 1.09 allozyme has high activity in WT and KL, but these arrangements differ in their developmental pattern of expression, WT being more active in adults. F2 segregational analyses are consistent with the variation being due to either structural enzyme variants or closely linked cis-acting regulatory elements. We argue that the suppression of recombination between arrangements has allowed the divergence in amylase activity among inversions.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Paul M Macdonald ◽  
Matt Kanke ◽  
Andrew Kenny

Certain forms of translational regulation, and translation itself, rely on long-range interactions between proteins bound to the different ends of mRNAs. A widespread assumption is that such interactions occur only in cis, between the two ends of a single transcript. However, certain translational regulatory defects of the Drosophila oskar (osk) mRNA can be rescued in trans. We proposed that inter-transcript interactions, promoted by assembly of the mRNAs in particles, allow regulatory elements to act in trans. Here we confirm predictions of that model and show that disruption of PTB-dependent particle assembly inhibits rescue in trans. Communication between transcripts is not limited to different osk mRNAs, as regulation imposed by cis-acting elements embedded in the osk mRNA spreads to gurken mRNA. We conclude that community effects exist in translational regulation.


Sign in / Sign up

Export Citation Format

Share Document