scholarly journals Identification of a proton sensor that regulates conductance and open time of single hERG channels

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stacey L. Wilson ◽  
Christopher E. Dempsey ◽  
Jules C. Hancox ◽  
Neil V. Marrion

AbstractThe hERG potassium channel influences ventricular action potential duration. Extracellular acidosis occurs in pathological states including cardiac ischaemia. It reduces the amplitude of hERG current and speeds up deactivation, which can alter cardiac excitability. This study aimed to identify the site of action by which extracellular protons regulate the amplitude of macroscopic hERG current. Recordings of macroscopic and single hERG1a and 1b channel activity, mutagenesis, and the recent cryoEM structure for hERG were employed. Single hERG1a and 1b channels displayed open times that decreased with membrane depolarization, suggestive of a blocking mechanism that senses approximately 20% of the membrane electric field. This mechanism was sensitive to pH; extracellular acidosis reduced both hERG1a and1b channel open time and conductance. The effects of acidosis on macroscopic current amplitude and deactivation displayed different sensitivities to protons. Point mutation of a pair of residues (E575/H578) in the pore turret abolished the acidosis-induced decrease of current amplitude, without affecting the change in current deactivation. In single hERG1a channel recordings, the conductance of the double-mutant channel was unaffected by extracellular acidosis. These findings identify residues in the outer turret of the hERG channel that act as a proton sensor to regulate open time and channel conductance.

1997 ◽  
Vol 272 (6) ◽  
pp. C1908-C1918 ◽  
Author(s):  
K. R. Eager ◽  
L. D. Roden ◽  
A. F. Dulhunty

Effects of the reactive disulfides, 2,2'- and 4,4'-dithiodipyridine, on single cardiac ryanodine receptor (RyR) ion channels incorporated into lipid bilayers are reported. RyRs are activated within minutes of addition of the reactive disulfides (10(-7) to 10(-3) M) with an irreversible loss of channel activity after the activation at concentrations > or = 10(-4) M. This activation, followed by loss of activity, is seen over a wide range of cytoplasmic (cis) Ca2+ concentration between 10(-9) and 2 x 10(-2) M and occurs more rapidly with higher reactive disulfide concentrations or when RyRs are initially active at 10(-5) or 10(-3) M Ca2+. The reactive disulfides increase the channel open probability by introducing long components into the open time distributions, increasing the mean channel open time by up to 50-fold. Closed time distributions are not altered by the sulfhydryl reagents. The effects of the reactive disulfides are prevented by the reducing agents dithiothreitol and glutathione (1–10 mM). The results suggest that cysteine residues on the RyR complex can regulate the ion channel gating mechanisms.


2008 ◽  
Vol 86 (5) ◽  
pp. 405-415 ◽  
Author(s):  
Jijin Lin ◽  
Shuguang Lin ◽  
Patrick C. Choy ◽  
Xiuzhang Shen ◽  
Chunyu Deng ◽  
...  

Protein–protein interaction plays a key role in the regulation of biological processes. The human potassium (HERG) channel is encoded by the ether-à-go-go-related gene (herg), and its activity may be regulated by association with other cellular proteins. To identify cellular proteins that might play a role in the regulation of the HERG channel, we screened a human heart cDNA library with the N terminus of HERG using a yeast 2-hybrid system, and identified caveolin-1 as a potential HERG partner. The interaction between these 2 proteins was confirmed by coimmunoprecipitation assay, and their overlapping subcellular localization was demonstrated by fluorescence immunocytochemistry. The physiologic implication of the protein–protein interaction was studied in whole-cell patch-clamp electrophysiology experiments. A significant increase in HERG current amplitude and a faster deactivation of tail current were observed in HEK293/HERG cells in a membrane lipid rafts disruption model and caveolin-1 knocked down cells by RNA interference. Alternatively, when caveolin-1 was overexpressed, the HERG current amplitude was significantly reduced and the tail current was deactivated more slowly. Taken together, these data indicate that HERG channels interact with caveolin-1 and are negatively regulated by this interaction. The finding from this study clearly demonstrates the regulatory role of caveolin-1 on HERG channels, and may help to understand biochemical events leading to arrhythmogenesis in the long QT syndrome in cardiac patients.


Synapse ◽  
2001 ◽  
Vol 40 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Vishnu Suppiramaniam ◽  
Ben A. Bahr ◽  
Srikumar Sinnarajah ◽  
Kittra Owens ◽  
Gary Rogers ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Niels Voigt ◽  
Ange Maguy ◽  
Yung-Hsin Yeh ◽  
Xiao-Yan Qi ◽  
Ursula Ravens ◽  
...  

Background: Although atrial tachycardia (AT) appears to promote agonist-independent constitutively active I K,ACh that increases susceptibility to AF, direct demonstration of dysregulated I K,ACh channel function is lacking. We studied AT effects on single I K,ACh channel activity in dog atria. Methods: I K,ACh channel activity was recorded with cell-attached patch clamp in isolated atrial myocytes of control (CTL) and AT (7 days, 400 min −1 ) dogs. Results : AT prolonged inducible AF duration from 44±22 to 413±167 s; N=9 dogs/gp, P<0.001. In the absence of cholinergic stimulation, single-channel openings with typical I K,ACh conductance and rectification were observed in CTL and AT (Figure ). AT produced prominent agonist-independent I K,ACh activity due to 7-fold increased opening frequency (f o ) and 10-fold increased open probability (P o ) vs CTL (P<0.01 for each), but unaltered open time and single channel conductance. With maximum I K,ACh activation (10 μm carbachol, CCh), f o was 38% lower, open time constant 25% higher, and P o and unitary conductance unchanged for AT vs CTL. The selective Kir3 blocker tertiapin (100 nM) reduced f o and P o by 48% and 51% (P<0.05 each) without altering other channel properties, confirming the identity of I K,ACh. Conclusions : AT produces prominent agonist-independent constitutive single-channel I K,ACh activity, providing a molecular basis for previously-observed AT-enhanced macroscopic I K,ACh , as well as associated AP-shortening and tertiapin-suppressible AF promotion. These results suggest an important role for constitutively active I K,ACh channels in AT-remodeling and support their interest as a potential novel AF-therapy target.


2013 ◽  
Vol 305 (9) ◽  
pp. H1397-H1404 ◽  
Author(s):  
Matthew R. Stump ◽  
Qiuming Gong ◽  
Zhengfeng Zhou

The human ether-a-go-go-related gene ( hERG) encodes a voltage-activated K+ channel that contributes to the repolarization of the cardiac action potential. Long QT syndrome type 2 (LQT2) is an autosomal dominant disorder caused by mutations in hERG, and patients with LQT2 are susceptible to severe ventricular arrhythmias. We have previously shown that nonsense and frameshift LQT2 mutations caused a decrease in mutant mRNA by the nonsense-mediated mRNA decay (NMD) pathway. The Q81X nonsense mutation was recently found to be resistant to NMD. Translation of Q81X is reinitiated at Met124, resulting in the generation of NH2-terminally truncated hERG channels with altered gating properties. In the present study, we identified two additional NMD-resistant LQT2 nonsense mutations, C39X and C44X, in which translation is reinitiated at Met60. Deletion of the first 59 residues of the channel truncated nearly one-third of the highly structured Per-Arnt-Sim domain and resulted in the generation of trafficking-defective proteins and a complete loss of hERG current. Partial deletion of the Per-Arnt-Sim domain also resulted in the accelerated degradation of the mutant channel proteins. The coexpression of mutant and wild-type channels did not significantly disrupt the function and trafficking properties of wild-type hERG. Our present findings indicate that translation reinitiation may generate trafficking-defective as well as dysfunctional channels in patients with LQT2 premature termination codon mutations that occur early in the coding sequence.


1997 ◽  
Vol 273 (5) ◽  
pp. H2534-H2538 ◽  
Author(s):  
Saeed Mohammad ◽  
Zhengfeng Zhou ◽  
Qiuming Gong ◽  
Craig T. January

Cisapride, a gastrointestinal prokinetic agent, is known to cause long Q-T syndrome and ventricular arrhythmias. The cellular mechanism is not known. The human ether-á-go-go-related gene ( HERG), which encodes the rapidly activating delayed rectifier K+current and is important in cardiac repolarization, may serve as a target for the action of cisapride. We tested the hypothesis that cisapride blocks HERG. The whole cell patch-clamp recording technique was used to study HERG channels stably expressed heterologously in HEK293 cells. Under voltage-clamp conditions, cisapride block of HERG is dose dependent with a half-maximal inhibitory concentration of 6.5 nM at 22°C ( n = 25 cells). Currents rapidly recovered with drug washout. The onset of block by cisapride required channel activation indicative of open or inactivated state blockage. Block of HERG with cisapride after channel activation was voltage dependent. At −20 mV, 10 nM cisapride reduced HERG tail-current amplitude by 5%, whereas, at +20 mV, the tail-current amplitude was reduced by 45% ( n = 4 cells). At −20 and +20 mV, 100 nM cisapride reduced tail-current amplitude by 66 and 90%, respectively. We conclude that cisapride is a potent blocker of HERG channels expressed in HEK293 cells. This effect may account for the clinical occurrence of Q-T prolongation and ventricular arrhythmias observed with cisapride.


2003 ◽  
Vol 284 (3) ◽  
pp. C607-C619 ◽  
Author(s):  
Alison L. Clarke ◽  
Steven Petrou ◽  
John V. Walsh ◽  
Joshua J. Singer

Fatty acids and other negatively charged single-chain lipids increase large-conductance Ca2+-activated K+(BKCa) channel activity, whereas sphingosine and other positively charged single-chain lipids suppress activity. Because these molecules are effective on both inside-out and outside-out patches and because they can flip across the bilayer, the location of their site of action is unclear. To identify the site of action of charged lipids on this channel, we used two compounds that are unlikely to flip across the lipid bilayer. Palmitoyl coenzyme A (PCoA) was used to identify the site of action of negatively charged lipids, and a positively charged myristoylated pentapeptide (myr-KPRPK) was used to investigate the site of action of positively charged lipids. The effect of these compounds on channel activity was studied in excised patches using patch-clamp techniques. In “normal” ionic strength solutions and in experiments where high-ionic strength solutions were used to shield membrane surface charge, PCoA increased channel activity only when applied to outside-out patches, suggesting that the site of action of negatively charged lipids is located on the outer surface of the membrane. A decrease in activity, similar to that of other positively charged lipids, was observed only when myr-KPRPK was applied to outside-out patches, suggesting that positively charged lipids suppress activity by also acting on the outer membrane surface. Some channel blockade effects of myr-KPRPK and KPRPK are also described. The sidedness of action suggests that modulation of channel activity by single-chain lipids can occur by their interaction with the channel protein.


1991 ◽  
Vol 261 (4) ◽  
pp. C583-C590 ◽  
Author(s):  
G. E. Kirsch ◽  
M. Taglialatela ◽  
A. M. Brown

Tetraethylammonium (TEA) has been used recently to probe natural and mutational variants of voltage-dependent K+ channels encoded by cDNA clones. Its usefulness as a probe of channel structure prompted us to examine the molecular mechanism by which TEA blocks single-channel currents in Xenopus oocytes expressing the rat brain K+ channel, RCK2. TEA at the intracellular surface of membrane patches decreased channel open time and increased the duration of closed intervals. Tetrapentylammonium had similar but more potent effects. Extracellular application of TEA caused an apparent reduction of single-channel amplitude. Block was slower at the high-affinity internal site than at the low-affinity external site. Internal TEA selectively blocks open K+ channels, and the voltage dependence of the block indicates that the binding site lies within the membrane electric field at a point 25% of the distance from the cytoplasmic margin. External TEA also interacts with the open channel but is less sensitive to membrane potential. The results indicate that the internal and external TEA binding sites define the inner and outer margins of the aqueous pore.


1982 ◽  
Vol 216 (1203) ◽  
pp. 225-251 ◽  

(i) Effects of extracellular sodium concentration, [Na] o , on endplate channel characteristics were investigated in voltage-clamped, glycerol- treated toad sartorius fibres. (ii) The relation between [Na] o (and [K] o ) and acetylcholine null potential could be reasonably well fitted by the Goldman-Hodgkin-Katz type of equation, except when [Na] o was higher than normal. Anions had no significant effect on the null potential. (iii) Endplate channel open time (ז), whether measured from miniature endplate currents or from current fluctuations induced by iontophoresis of acetylcholine, varied inversely with [Na] o . The relation between ז -1 (=α) and [Na] o could be fitted by α = αmax [Na] o / ( K m +|[Na] o ) with a K m of 92 mM. (iv) Endplate conductance, measured at the peak of endplate currents or at the peak of spontaneous miniature endplate currents, increased nonlinearly with [Na] o . (v) Single channel conductance, γ, also increased nonlinearly with [Na] o . Experimental observations at -90 mV could be fitted by the relation γ = γ max [Na] o / ( K m + [Na] o ), giving values for γ max and K m of 47 pS and 146 mM respectively. Correcting channel conductance for the contribution from potassium ions gave values of γmax and K m of 78 pS and 423 mM respectively. (vi) The results are consistent with the hypothesis that binding sites for Na ions can modulate both channel lifetime and conductance and that these sites become saturated at higher sodium concentrations.


Sign in / Sign up

Export Citation Format

Share Document