scholarly journals Gene expression trajectories during male and female reproductive development in balsam poplar (Populus balsamifera L.)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Quentin Cronk ◽  
Raju Soolanayakanahally ◽  
Katharina Bräutigam
Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1167-1181
Author(s):  
Pei-Wen Chiang ◽  
David M Kurnit

Abstract Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.


Author(s):  
Luise Hochmuth ◽  
Christiane Körner ◽  
Fritzi Ott ◽  
Daniela Volke ◽  
Kaja Blagotinšek Cokan ◽  
...  

AbstractThe liver is one of the most sexually dimorphic organs. The hepatic metabolic pathways that are subject to sexual dimorphism include xenobiotic, amino acid and lipid metabolism. Non-alcoholic fatty liver disease and hepatocellular carcinoma are among diseases with sex-dependent prevalence, progression and outcome. Although male and female livers differ in their abilities to metabolize foreign compounds, including drugs, sex-dependent treatment and pharmacological dynamics are rarely applied in all relevant cases. Therefore, it is important to consider hepatic sexual dimorphism when developing new treatment strategies and to understand the underlying mechanisms in model systems. We isolated primary hepatocytes from male and female C57BL6/N mice and examined the sex-dependent transcriptome, proteome and extracellular metabolome parameters in the course of culturing them for 96 h. The sex-specific gene expression of the general xenobiotic pathway altered and the female-specific expression of Cyp2b13 and Cyp2b9 was significantly reduced during culture. Sex-dependent differences of several signaling pathways increased, including genes related to serotonin and melatonin degradation. Furthermore, the ratios of male and female gene expression were inversed for other pathways, such as amino acid degradation, beta-oxidation, androgen signaling and hepatic steatosis. Because the primary hepatocytes were cultivated without the influence of known regulators of sexual dimorphism, these results suggest currently unknown modulatory mechanisms of sexual dimorphism in vitro. The large sex-dependent differences in the regulation and dynamics of drug metabolism observed during cultivation can have an immense influence on the evaluation of pharmacodynamic processes when conducting initial preclinical trials to investigate potential new drugs.


Botany ◽  
2015 ◽  
Vol 93 (5) ◽  
pp. 307-316 ◽  
Author(s):  
L.I. Lindström ◽  
L.F. Hernández

In sunflower (Helianthus annuus L.), there has been an intense genetic selection for achenes with agronomic value, such as greater mass, oil content, and disease resistance. However, the information regarding the anatomical events that control their growth and maturation is surprisingly scarce. The aim of the present work was to study sunflower male and female sporogenesis and gametogenesis, as well as cell division and enlargement and tissue differentiation in the ovary and the embryo, linking the timing of these events to two frequently used phenological scales and a thermal time scale. In addition, we propose an ontogenetic scale that integrates the results of the present work to that of previous studies on sunflower reproductive development. The unified scales presented here provide a framework for others to investigate the relationships uncovered in this study in different genetic backgrounds and under different growing conditions.


2008 ◽  
Vol 9 (12) ◽  
pp. R181 ◽  
Author(s):  
Jiong Ma ◽  
David S Skibbe ◽  
John Fernandes ◽  
Virginia Walbot

Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 123-134 ◽  
Author(s):  
Grazieli Marinheiro Machado ◽  
Ester Siqueira Caixeta ◽  
Carolina Madeira Lucci ◽  
Rodolfo Rumpf ◽  
Maurício Machaim Franco ◽  
...  

SummaryThe objective of this study was to compare morphological characteristics, kinetics of development, and gene expression of male and female IVP embryos that were cultured until day (D)15 (fertilization = D0), using either phosphate-buffered saline (PBS) or Milli-Q water (MQW) to dilute the agarose gel used for tunnel construction. On D11, embryos (n = 286) were placed in agarose gel tunnels diluted in PBS and MQW. Embryos were evaluated for morphology, and embryo size was recorded on D11, D12.5, D14 and D15. Then, embryos were sexed and used for gene expression analyses (G6PD, GLUT1, GLUT3, PGK1, PLAC8, KRT8, HSF1 and IFNT). The percentage of elongated embryos at D15 was higher (p < 0.05) in the PBS (54%) than in the MQW (42%) gel. However, embryos produced in MQW were bigger (p < 0.05) and had a lower expression of GLUT1 (p = 0.08) than those cultured in PBS. There was a higher proportion of male than female embryos at D15 in both treatments, MQW (65% vs. 35%; p < 0.05) and PBS (67% vs. 33%; p < 0.05); however, embryo size was not significantly different between genders. Moreover, D15 female embryos had greater expression of G6PD (p = 0.05) and KRT8 (p = 0.03) than male embryos. In conclusion, the diluent used for tunnel construction affected embryo development in the post-hatching development (PHD) system, and the use of MQW was the most indicative measure for the evaluation of embryo quality. Male and female embryos cultured from D11 to D15, either in an MQW or PBS agarose gel, demonstrated similar development but different gene expression.


2018 ◽  
Author(s):  
Αλέξανδρος Τσακογιάννης

The differences between sexes and the concept of sex determination have always fascinated, yet troubled philosophers and scientists. Among the animals that reproduce sexually, teleost fishes show a very wide repertoire of reproductive modes. Except for the gonochoristic species, fish are the only vertebrates in which hermaphroditism appears naturally. Hermaphroditism refers to the capability of an organism to reproduce both as male and female in its life cycle and there are various forms of it. In sequential hermaphroditism, an individual begins as female first and then can change sex to become male (protogyny), or vice versa (protandry). The diverse sex-phenotypes of fish are regulated by a variety of sex determination mechanisms, along a continuum of environmental and heritable factors. The vast majority of sexually dimorphic traits result from the differential expression of genes that are present in both sexes. To date, studies regarding the sex-specific differences in gene expression have been conducted mainly in sex determination systems of model fish species that are well characterized at the genomic level, with distinguishable heteromorphic sex chromosomes, exhibiting genetic sex determination and gonochorism. Among teleosts, the Sparidae family is considered to be one of the most diversified families regarding its reproductive systems, and thus is a unique model for comparative studies to understand the molecular mechanisms underlying different sexual motifs. In this study, using RNA sequencing, we studied the transcriptome from gonads and brains of both sexes in five sparid species, representatives of four different reproductive styles. Specifically, we explored the sex-specific expression patterns of a gonochoristic species: the common dentex Dentex dentex, two protogynous hermaphrodites: the red porgy Pagrus pagrus and the common pandora Pagellus erythrinus, the rudimentary hermaphrodite sharpsnout seabream Diplodus puntazzo, and the protandrous gilthead seabream Sparus aurata. We found minor sex-related expression differences indicating a more homogeneous and sexually plastic brain, whereas there was a plethora of sex biased gene expression in the gonads. The functional divergence of the two gonadal types is reflected in their transcriptomic profiles, in terms of the number of genes differentially expressed, as well as the expression magnitude (i.e. fold-change differences). The observation of almost double the number of up-regulated genes in males compared to females indicates a male-biased expression tendency. Focusing on the pathways and genes implicated in sex determination/differentiation, we aimed to unveil the molecular pathways through which these non-model fish species develop a masculine or a feminine character. We observed the implicated pathways and major gene families (e.g. Wnt/b-catenin pathway and Retinoic-acid signaling pathway, Notch, TGFβ) behind sex-biased expression and the recruitment of known sex-related genes either to male or female type of gonads in these fish. (e.g Dmrt1, Sox9, Sox3, Cyp19a, Filgla, Ctnnb1, Gsdf9, Stra6 etc.). We also carefully investigated the presence of genes reported to be involved in sex determination/differentiation mechanisms in other vertebrates and fish and compared their expression patterns in the species under study. The expression profiling exposed known candidate molecular-players/genes establishing the common female (Cyp19a1, Sox3, Figla, Gdf9, Cyp26a, Ctnnb1, Dnmt1, Stra6) and male identity (Dmrt1, Sox9, Dnmt3aa, Rarb, Raraa, Hdac8, Tdrd7) of the gonad in these sparids. Additionally, we focused on those contributing to a species-specific manner either to female (Wnt4a, Dmrt2a, Foxl2 etc.) or to male (Amh, Dmrt3a, Cyp11b etc.) characters, and discussed the expression patterns of factors that belong to important pathways and/or gene families in the SD context, in our species gonadal transcriptomes. Taken together, most of the studied genes form part of the cascade of sex determination, differentiation, and reproduction across teleosts. In this study, we focused on genes that are active when sex is established (sex-maintainers), revealing the basic “gene-toolkit” & gene-networks underlying functional sex in these five sparids. Comparing related species with alternative reproductive styles, we saw different combinations of genes with conserved sex-linked roles and some “handy” molecular players, in a “partially- conserved” or “modulated” network formulating the male and female phenotype. The knowledge obtained in this study and tools developed during the process have set the groundwork for future experiments that can improve the sex control of this species and help the in-deep understanding the complex process of sex differentiation in the more flexible multi-component systems as these studied here.


Theranostics ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 1792-1809 ◽  
Author(s):  
Sunil M. Kurian ◽  
Marta Novais ◽  
Thomas Whisenant ◽  
Terri Gelbart ◽  
Joel N. Buxbaum ◽  
...  

2011 ◽  
Vol 98 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Stephen R. Keller ◽  
Raju Y. Soolanayakanahally ◽  
Robert D. Guy ◽  
Salim N. Silim ◽  
Matthew S. Olson ◽  
...  

1996 ◽  
Vol 74 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Joshua P. Schimel ◽  
Keith Van Cleve ◽  
Rex G. Cates ◽  
Thomas P. Clausen ◽  
Paul B. Reichardt

The transition from alder (Alnus tenuifolia) to balsam poplar (Populus balsamifera) is a critical turning point in primary succession on river floodplains in interior Alaska. Associated with the change in plant species are large changes in N cycling. N-fixation and nitrification decrease and the system becomes N-limited, with NH4+ dominating the inorganic N pool. Balsam poplar leaves contain large quantities of tannins and low molecular weight phenolic compounds. We evaluated the effect of these compounds on microbial respiration and N cycling in laboratory assays on soils from an alder-dominated site. Plant compounds were purified and applied to silica gel as an inert carrier. Both tannins and phenolics caused net N-immobilization over a 30-day assay. However, tannins inhibited respiration while phenolics stimulated it. There were no specific effects on nitrification. Thus, tannins acted as a general microbial inhibitor, while phenolics acted as a growth substrate. By inhibiting mineralization while stimulating immobilization, poplar secondary compounds may reduce soil N-availability during the transition betwen alder and poplar stages in succession. Keywords: respiration, mineralization, tannins, secondary chemicals, succession, plant–microbe interactions.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1825-1832 ◽  
Author(s):  
Barbara P Rattner ◽  
Victoria H Meller

Abstract The MSL complex of Drosophila upregulates transcription of the male X chromosome, equalizing male and female X-linked gene expression. Five male-specific lethal proteins and at least one of the two noncoding roX RNAs are essential for this process. The roX RNAs are required for the localization of MSL complexes to the X chromosome. Although the mechanisms directing targeting remain speculative, the ratio of MSL protein to roX RNA influences localization of the complex. We examine the transcriptional regulation of the roX genes and show that MSL2 controls male-specific roX expression in the absence of any other MSL protein. We propose that this mechanism maintains a stable MSL/roX ratio that is favorable for localization of the complex to the X chromosome.


Sign in / Sign up

Export Citation Format

Share Document