scholarly journals Physiological response of mammary glands to Escherichia coli infection:A conflict between glucose need for milk production and immune response

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shlomo E. Blum ◽  
Dan E. Heller ◽  
Shamay Jacoby ◽  
Oleg Krifuks ◽  
Uzi Merin ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shlomo E. Blum ◽  
Dan E. Heller ◽  
Shamay Jacoby ◽  
Oleg Krifuks ◽  
Uzi Merin ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1015 ◽  
Author(s):  
Shuangming Yue ◽  
Zhisheng Wang ◽  
Lizhi Wang ◽  
Quanhui Peng ◽  
Bai Xue

Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 110
Author(s):  
Anna K. Riebisch ◽  
Sabrina Mühlen ◽  
Yan Yan Beer ◽  
Ingo Schmitz

Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.


2019 ◽  
Vol 102 (1) ◽  
pp. 578-594 ◽  
Author(s):  
A.K. Vasquez ◽  
E.K. Ganda ◽  
M.B. Capel ◽  
S. Eicker ◽  
P.D. Virkler ◽  
...  

2018 ◽  
Vol 109 (2) ◽  
pp. 248-256
Author(s):  
E. Meng ◽  
J. Li ◽  
B. Tang ◽  
Y. Hu ◽  
T. Qiao ◽  
...  

AbstractAlthough parasites and microbial pathogens are both detrimental to insects, little information is currently available on the mechanism involved in how parasitized hosts balance their immune responses to defend against microbial infections. We addressed this in the present study by comparing the immune response between unparasitized and parasitized pupae of the chrysomelid beetle, Octodonta nipae (Maulik), to Escherichia coli invasion. In an in vivo survival assay, a markedly reduced number of E. coli colony-forming units per microliter was detected in parasitized pupae at 12 and 24 h post-parasitism, together with decreased phagocytosis and enhanced bactericidal activity at 12 h post-parasitism. The effects that parasitism had on the mRNA expression level of selected antimicrobial peptides (AMPs) of O. nipae pupae showed that nearly all transcripts of AMPs examined were highly upregulated during the early and late parasitism stages except defensin 2B, whose mRNA expression level was downregulated at 24 h post-parasitism. Further elucidation on the main maternal fluids responsible for alteration of the primary immune response against E. coli showed that ovarian fluid increased phagocytosis at 48 h post-injection. These results indicated that the enhanced degradation of E. coli in parasitized pupae resulted mainly from the elevated bactericidal activity without observing the increased transcripts of target AMPs. This study contributes to a better understanding of the mechanisms involved in the immune responses of a parasitized host to bacterial infections.


1998 ◽  
Vol 4 (2) ◽  
pp. 71-75
Author(s):  
Takaoki Hirose ◽  
Akifumi Yokoo ◽  
Hiroshi Hotta ◽  
Yasuharu Kunishima ◽  
Taiji Tsukamoto

Sign in / Sign up

Export Citation Format

Share Document