scholarly journals Predicting dengue importation into Europe, using machine learning and model-agnostic methods

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Donald Salami ◽  
Carla Alexandra Sousa ◽  
Maria do Rosário Oliveira Martins ◽  
César Capinha

Abstract The geographical spread of dengue is a global public health concern. This is largely mediated by the importation of dengue from endemic to non-endemic areas via the increasing connectivity of the global air transport network. The dynamic nature and intrinsic heterogeneity of the air transport network make it challenging to predict dengue importation. Here, we explore the capabilities of state-of-the-art machine learning algorithms to predict dengue importation. We trained four machine learning classifiers algorithms, using a 6-year historical dengue importation data for 21 countries in Europe and connectivity indices mediating importation and air transport network centrality measures. Predictive performance for the classifiers was evaluated using the area under the receiving operating characteristic curve, sensitivity, and specificity measures. Finally, we applied practical model-agnostic methods, to provide an in-depth explanation of our optimal model’s predictions on a global and local scale. Our best performing model achieved high predictive accuracy, with an area under the receiver operating characteristic score of 0.94 and a maximized sensitivity score of 0.88. The predictor variables identified as most important were the source country’s dengue incidence rate, population size, and volume of air passengers. Network centrality measures, describing the positioning of European countries within the air travel network, were also influential to the predictions. We demonstrated the high predictive performance of a machine learning model in predicting dengue importation and the utility of the model-agnostic methods to offer a comprehensive understanding of the reasons behind the predictions. Similar approaches can be utilized in the development of an operational early warning surveillance system for dengue importation.

2019 ◽  
Author(s):  
Donald Salami ◽  
Carla Alexandra Sousa ◽  
Maria do Rosário Oliveira Martins ◽  
César Capinha

ABSTRACTThe geographical spread of dengue is a global public health concern. This is largely mediated by the importation of dengue from endemic to non-endemic areas via the increasing connectivity of the global air transport network. The dynamic nature and intrinsic heterogeneity of the air transport network make it challenging to predict dengue importation.Here, we explore the capabilities of state-of-the-art machine learning algorithms to predict dengue importation. We trained four machine learning classifiers algorithms, using a 6-year historical dengue importation data for 21 countries in Europe and connectivity indices mediating importation and air transport network centrality measures. Predictive performance for the classifiers was evaluated using the area under the receiving operating characteristic curve, sensitivity, and specificity measures. Finally, we applied practical model-agnostic methods, to provide an in-depth explanation of our optimal model’s predictions on a global and local scale.Our best performing model achieved high predictive accuracy, with an area under the receiver operating characteristic score of 0.94 and a maximized sensitivity score of 0.88. The predictor variables identified as most important were the source country’s dengue incidence rate, population size, and volume of air passengers. Network centrality measures, describing the positioning of European countries within the air travel network, were also influential to the predictions.We demonstrated the high predictive performance of a machine learning model in predicting dengue importation and the utility of the model-agnostic methods to offer a comprehensive understanding of the reasons behind the predictions. Similar approaches can be utilized in the development of an operational early warning surveillance system for dengue importation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 15-16
Author(s):  
Pablo A S Fonseca ◽  
Massimo Tornatore ◽  
Angela Cánovas

Abstract Reduced fertility is one of the main causes of economic losses in dairy farms. The cost of a stillbirth is estimated in US$ 938 per case in Holstein herds. Machine learning (ML) is gaining popularity in the livestock sector as a mean to identify hidden patterns and due to its potential to address dimensionality problems. Here we investigate the application of ML algorithms for the prediction of cows with higher stillbirth susceptibility in two scenarios: cows with >25% and >33.33% of stillbirths among birth records. These thresholds correspond to percentiles 75 (still_75) and 90 (still_90), respectively. A total of 10,570 cows and 50,541 birth records were collected to perform a haplotype-based genome-wide association study. Five-hundred significant pseudo single nucleotide polymorphisms (pseudo-SNPs) (False-Discovery Rate< 0.05) were used as input features of ML-based predictions to determine if the cow is in the top-75 and top-90 percentiles. Table 1 shows the classification performance of the investigated ML and linear models. The ML models outperformed linear models for both thresholds. In general, still_75 showed higher F1 values compared to still_90, suggesting a lower misclassification ratio when a less stringent threshold is used. We observe that accuracy of the models in our study is higher when compared to ML-based prediction accuracies in other breeds, e.g. compared to the accuracies of 0.46 and 0.67 that were achieved using SNPs for body weight in Brahman and fertility traits in Nellore, respectively. Xgboost algorithm shows the highest balanced accuracy (BA; 0.625), F1-score (0.588) and area under the curve (AUC; 0.688), suggesting that xgboost can achieve the highest predictive performance and the lowest difference in misclassification ratio between classes. The ML applied over haplotype libraries is an interesting approach for the detection of animals with higher susceptibility to stillbirths due to highest predictive accuracy and relatively lower misclassification ratio.


Cancers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Young Kim ◽  
Yong Kim ◽  
Suh Lee ◽  
Hye Yang ◽  
Sung Kim

Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis and according intervention, but is not yet available due to personal variations and the complex mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based, multivariate model for personalized pathways in AR to EGFR inhibitors, using sophisticated machine learning algorithms. Surprisingly, the model achieved excellent predictive performance, with a cross-study validation area under curve (AUC) of over 0.9, and generalization performance on independent cohorts of samples, with a perfect AUC score of 1. Furthermore, the model showed excellent transferability across different cancer cell lines and EGFR inhibitors, including gefitinib, erlotinib, afatinib, and cetuximab. In conclusion, our model achieved high predictive accuracy through robust cross study validation, and enabled individualized prediction on newly introduced data. We also discovered common pathway alteration signatures for AR to EGFR inhibitors, which can provide directions for other follow-up studies.


2020 ◽  
Author(s):  
Uzair Bhatti

BACKGROUND In the era of health informatics, exponential growth of information generated by health information systems and healthcare organizations demands expert and intelligent recommendation systems. It has become one of the most valuable tools as it reduces problems such as information overload while selecting and suggesting doctors, hospitals, medicine, diagnosis etc according to patients’ interests. OBJECTIVE Recommendation uses Hybrid Filtering as one of the most popular approaches, but the major limitations of this approach are selectivity and data integrity issues.Mostly existing recommendation systems & risk prediction algorithms focus on a single domain, on the other end cross-domain hybrid filtering is able to alleviate the degree of selectivity and data integrity problems to a better extent. METHODS We propose a novel algorithm for recommendation & predictive model using KNN algorithm with machine learning algorithms and artificial intelligence (AI). We find the factors that directly impact on diseases and propose an approach for predicting the correct diagnosis of different diseases. We have constructed a series of models with good reliability for predicting different surgery complications and identified several novel clinical associations. We proposed a novel algorithm pr-KNN to use KNN for prediction and recommendation of diseases RESULTS Beside that we compared the performance of our algorithm with other machine algorithms and found better performance of our algorithm, with predictive accuracy improving by +3.61%. CONCLUSIONS The potential to directly integrate these predictive tools into EHRs may enable personalized medicine and decision-making at the point of care for patient counseling and as a teaching tool. CLINICALTRIAL dataset for the trials of patient attached


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imogen Schofield ◽  
David C. Brodbelt ◽  
Noel Kennedy ◽  
Stijn J. M. Niessen ◽  
David B. Church ◽  
...  

AbstractCushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to predict a future diagnosis of Cushing's syndrome, using structured clinical data from the VetCompass programme in the UK. Dogs suspected of having Cushing's syndrome were included in the analysis and classified based on their final reported diagnosis within their clinical records. Demographic and clinical features available at the point of first suspicion by the attending veterinarian were included within the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome diagnoses, with good predictive performance. The LASSO penalised regression model indicated the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New approaches using these methods could support clinical decision-making and contribute to improved diagnosis of Cushing’s syndrome in dogs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengmao Zhou ◽  
Junhong Hu ◽  
Ying Wang ◽  
Mu-Huo Ji ◽  
Jianhua Tong ◽  
...  

AbstractTo explore the predictive performance of machine learning on the recurrence of patients with gastric cancer after the operation. The available data is divided into two parts. In particular, the first part is used as a training set (such as 80% of the original data), and the second part is used as a test set (the remaining 20% of the data). And we use fivefold cross-validation. The weight of recurrence factors shows the top four factors are BMI, Operation time, WGT and age in order. In training group:among the 5 machine learning models, the accuracy of gbm was 0.891, followed by gbm algorithm was 0.876; The AUC values of the five machine learning algorithms are from high to low as forest (0.962), gbm (0.922), GradientBoosting (0.898), DecisionTree (0.790) and Logistic (0.748). And the precision of the forest is the highest 0.957, followed by the GradientBoosting algorithm (0.878). At the same time, in the test group is as follows: the highest accuracy of Logistic was 0.801, followed by forest algorithm and gbm; the AUC values of the five algorithms are forest (0.795), GradientBoosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine learning algorithms, the highest precision rate of Logistic is 1.000, followed by the gbm (0.487). Machine learning can predict the recurrence of gastric cancer patients after an operation. Besides, the first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, WGT and age.


2021 ◽  
Author(s):  
Xiaotong Zhu ◽  
Jinhui Jeanne Huang

<p>Remote sensing monitoring has the characteristics of wide monitoring range, celerity, low cost for long-term dynamic monitoring of water environment. With the flourish of artificial intelligence, machine learning has enabled remote sensing inversion of seawater quality to achieve higher prediction accuracy. However, due to the physicochemical property of the water quality parameters, the performance of algorithms differs a lot. In order to improve the predictive accuracy of seawater quality parameters, we proposed a technical framework to identify the optimal machine learning algorithms using Sentinel-2 satellite and in-situ seawater sample data. In the study, we select three algorithms, i.e. support vector regression (SVR), XGBoost and deep learning (DL), and four seawater quality parameters, i.e. dissolved oxygen (DO), total dissolved solids (TDS), turbidity(TUR) and chlorophyll-a (Chla). The results show that SVR is a more precise algorithm to inverse DO (R<sup>2</sup> = 0.81). XGBoost has the best accuracy for Chla and Tur inversion (R<sup>2</sup> = 0.75 and 0.78 respectively) while DL performs better in TDS (R<sup>2</sup> =0.789). Overall, this research provides a theoretical support for high precision remote sensing inversion of offshore seawater quality parameters based on machine learning.</p>


2021 ◽  
pp. 1-10
Author(s):  
I. Krug ◽  
J. Linardon ◽  
C. Greenwood ◽  
G. Youssef ◽  
J. Treasure ◽  
...  

Abstract Background Despite a wide range of proposed risk factors and theoretical models, prediction of eating disorder (ED) onset remains poor. This study undertook the first comparison of two machine learning (ML) approaches [penalised logistic regression (LASSO), and prediction rule ensembles (PREs)] to conventional logistic regression (LR) models to enhance prediction of ED onset and differential ED diagnoses from a range of putative risk factors. Method Data were part of a European Project and comprised 1402 participants, 642 ED patients [52% with anorexia nervosa (AN) and 40% with bulimia nervosa (BN)] and 760 controls. The Cross-Cultural Risk Factor Questionnaire, which assesses retrospectively a range of sociocultural and psychological ED risk factors occurring before the age of 12 years (46 predictors in total), was used. Results All three statistical approaches had satisfactory model accuracy, with an average area under the curve (AUC) of 86% for predicting ED onset and 70% for predicting AN v. BN. Predictive performance was greatest for the two regression methods (LR and LASSO), although the PRE technique relied on fewer predictors with comparable accuracy. The individual risk factors differed depending on the outcome classification (EDs v. non-EDs and AN v. BN). Conclusions Even though the conventional LR performed comparably to the ML approaches in terms of predictive accuracy, the ML methods produced more parsimonious predictive models. ML approaches offer a viable way to modify screening practices for ED risk that balance accuracy against participant burden.


2019 ◽  
Vol 51 (5) ◽  
pp. 1-32 ◽  
Author(s):  
Felipe Grando ◽  
Lisandro Z. Granville ◽  
Luis C. Lamb

2021 ◽  
Author(s):  
Myeong Gyu Kim ◽  
Jae Hyun Kim ◽  
Kyungim Kim

BACKGROUND Garlic-related misinformation is prevalent whenever a virus outbreak occurs. Again, with the outbreak of coronavirus disease 2019 (COVID-19), garlic-related misinformation is spreading through social media sites, including Twitter. Machine learning-based approaches can be used to detect misinformation from vast tweets. OBJECTIVE This study aimed to develop machine learning algorithms for detecting misinformation on garlic and COVID-19 in Twitter. METHODS This study used 5,929 original tweets mentioning garlic and COVID-19. Tweets were manually labeled as misinformation, accurate information, and others. We tested the following algorithms: k-nearest neighbors; random forest; support vector machine (SVM) with linear, radial, and polynomial kernels; and neural network. Features for machine learning included user-based features (verified account, user type, number of followers, and follower rate) and text-based features (uniform resource locator, negation, sentiment score, Latent Dirichlet Allocation topic probability, number of retweets, and number of favorites). A model with the highest accuracy in the training dataset (70% of overall dataset) was tested using a test dataset (30% of overall dataset). Predictive performance was measured using overall accuracy, sensitivity, specificity, and balanced accuracy. RESULTS SVM with the polynomial kernel model showed the highest accuracy of 0.670. The model also showed a balanced accuracy of 0.757, sensitivity of 0.819, and specificity of 0.696 for misinformation. Important features in the misinformation and accurate information classes included topic 4 (common myths), topic 13 (garlic-specific myths), number of followers, topic 11 (misinformation on social media), and follower rate. Topic 3 (cooking recipes) was the most important feature in the others class. CONCLUSIONS Our SVM model showed good performance in detecting misinformation. The results of our study will help detect misinformation related to garlic and COVID-19. It could also be applied to prevent misinformation related to dietary supplements in the event of a future outbreak of a disease other than COVID-19.


Sign in / Sign up

Export Citation Format

Share Document