scholarly journals Monitoring the molecular composition of live cells exposed to electric pulses via label-free optical methods

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antoine Azan ◽  
Marianne Grognot ◽  
Tomás García-Sánchez ◽  
Lucie Descamps ◽  
Valérie Untereiner ◽  
...  
2019 ◽  
Vol 63 (5) ◽  
pp. 2028-2034 ◽  
Author(s):  
Kristel Sepp ◽  
Martin Lee ◽  
Marie T. J. Bluntzer ◽  
G. Vignir Helgason ◽  
Alison N. Hulme ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 750
Author(s):  
Pasquale Marrazzo ◽  
Valeria Pizzuti ◽  
Silvia Zia ◽  
Azzurra Sargenti ◽  
Daniele Gazzola ◽  
...  

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.


2021 ◽  
Vol 7 (1) ◽  
pp. eabe4310
Author(s):  
Yue Li ◽  
Adam Eshein ◽  
Ranya K.A. Virk ◽  
Aya Eid ◽  
Wenli Wu ◽  
...  

Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.


2018 ◽  
Vol 185 ◽  
pp. 10006 ◽  
Author(s):  
Natalia V. Guteneva ◽  
Sergey L. Znoyko ◽  
Alexey V. Orlov ◽  
Maxim P. Nikitin ◽  
Petr I. Nikitin

Precise quantitative and highly sensitive detection of small molecules (haptens) is highly demanded in medicine, food quality control, in vitro diagnostics, criminalistics, environmental monitoring, etc. In the present work, the magnetic method of particle quantification and the optical methods of spectral correlation and spectral phase interferometry complement each other for optimization of a quantitative assay for measuring concentrations of small molecules. The assay employs magnetic nanoparticles as labels in rapid immunochromatographic format. The approach was demonstrated with fluorescein as a model molecule. The interferometric label-free biosensors were employed for selection of optimal reagents that produced high specificity and sensitivity. The method of magnetic particle quantification counted the magnetic labels over the entire volume of the immunochromatographic membrane to provide their distribution along the test strip. Such distribution was used for optimization of such parameters as concentrations of the used reagents and of antibody immobilized on the labels, amount of the labels and conjugates of haptens with protein carriers to realize the advanced quantitative immunochromatographic assay.


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Artur Yakimovich ◽  
Robert Witte ◽  
Vardan Andriasyan ◽  
Fanny Georgi ◽  
Urs F. Greber

ABSTRACTCytopathic effects (CPEs) are a hallmark of infections. CPEs are difficult to observe due to phototoxicity from classical light microscopy. We report distinct patterns of virus infections in live cells using digital holo-tomographic microscopy (DHTM). DHTM is label-free and records the phase shift of low-energy light passing through the specimen on a transparent surface with minimal perturbation. DHTM measures the refractive index (RI) and computes the refractive index gradient (RIG), unveiling optical heterogeneity in cells. We find that vaccinia virus (VACV), herpes simplex virus (HSV), and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV infection, but not HSV and RV infections, induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics and induced apoptotic features akin to those caused by the chemical compound staurosporine. In sum, we introduce DHTM for quantitative label-free microscopy in infection research and uncover virus type-specific changes and CPE in living cells with minimal interference.IMPORTANCEThis study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM.


2020 ◽  
Author(s):  
Yue Li ◽  
Adam Eshein ◽  
Ranya K.A. Virk ◽  
Aya Eid ◽  
Wenli Wu ◽  
...  

AbstractIn eukaryotic cells, chromatin structure is linked to transcription processes through the regulation of genome organization. Extending across multiple length-scales - from the nucleosome to higher-order three-dimensional structures - chromatin is a dynamic system which evolves throughout the lifetime of a cell. However, no individual technique can fully elucidate the behavior of chromatin organization and its relation to molecular function at all length- and timescales at both a single-cell and a cell population level. Herein, we present a multi-technique nanoscale Chromatin Imaging and Analysis (nano-ChIA) platform that bridges electron tomography and optical superresolution imaging of chromatin conformation and transcriptional processes, with resolution down to the level of individual nucleosomes, with high-throughput, label-free analysis of chromatin packing and its dynamics in live cells. Utilizing nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nm, sub-Mb genomic size, and an internal fractal structure. The chromatin packing behavior of these domains is directly influenced by active gene transcription. Furthermore, we demonstrated that the chromatin packing domain structure is correlated among progenitor cells and all their progeny, indicating that the organization of chromatin into fractal packing domains is heritable across cell division. Further studies employing the nano-ChIA platform have the potential to provide a more coherent picture of chromatin structure and its relation to molecular function.


2021 ◽  
Author(s):  
Steven H. Huang ◽  
Jiaruo Li ◽  
Zhiyuan Fan ◽  
Robert Delgado ◽  
Gennady Shvets

Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures, or plasmonic metasurfaces, as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.


2020 ◽  
Author(s):  
Chi Zhang ◽  
Stephen Boppart

Abstract The mitochondrion is one of the key organelles for maintaining cellular homeostasis. External environmental stimuli and internal regulatory processes alter the metabolism and functions of mitochondria. To understand these activities of mitochondria, it is critical to probe the key metabolic molecules inside these organelles. In this study, we used label-free chemical imaging modalities including coherent anti-Stokes Raman scattering and multiphoton-excited autofluorescence to study the mitochondrial activities in living cancer cells. We found that hypothermia exposure tends to induce fatty-acid (FA) accumulation in some mitochondria of MIAPaCa-2 cells. Autofluorescence images show that the FA-accumulated mitochondria also have abnormal NADH and FAD metabolism, likely induced by the dysfunction of the electron transport chain. We also found that when the cells were re-warmed to physiological temperature after a period of hypothermia, the FA-accumulated mitochondria changed their structural features, likely caused by the mitophagy process. To the best of our knowledge, this is the first time that FA accumulation in mitochondria was observed in live cells. Our research also demonstrates that multimodal label-free chemical imaging is an attractive tool to discover abnormal functions of mitochondria at the single-organelle level and can be used to quantify the dynamic changes of this organelle under perturbative conditions.


Sign in / Sign up

Export Citation Format

Share Document