scholarly journals Volumetric registration of magnetic nanoparticles for optimization of quantitative immunochromatographic assays for detection of small molecules

2018 ◽  
Vol 185 ◽  
pp. 10006 ◽  
Author(s):  
Natalia V. Guteneva ◽  
Sergey L. Znoyko ◽  
Alexey V. Orlov ◽  
Maxim P. Nikitin ◽  
Petr I. Nikitin

Precise quantitative and highly sensitive detection of small molecules (haptens) is highly demanded in medicine, food quality control, in vitro diagnostics, criminalistics, environmental monitoring, etc. In the present work, the magnetic method of particle quantification and the optical methods of spectral correlation and spectral phase interferometry complement each other for optimization of a quantitative assay for measuring concentrations of small molecules. The assay employs magnetic nanoparticles as labels in rapid immunochromatographic format. The approach was demonstrated with fluorescein as a model molecule. The interferometric label-free biosensors were employed for selection of optimal reagents that produced high specificity and sensitivity. The method of magnetic particle quantification counted the magnetic labels over the entire volume of the immunochromatographic membrane to provide their distribution along the test strip. Such distribution was used for optimization of such parameters as concentrations of the used reagents and of antibody immobilized on the labels, amount of the labels and conjugates of haptens with protein carriers to realize the advanced quantitative immunochromatographic assay.

Author(s):  
Thai Huu Nguyen ◽  
Qiao Lin

Aptamers are oligonucleotides (DNA or RNA) that bind to chemical and biological analyte targets via affinity interactions. Through an in vitro synthetic process, aptamers can be developed for an extremely broad spectrum of analytes, such as small molecules, proteins, cells, viruses, and bacteria. Target recognition by aptamers is highly selective, as affinity interactions result in secondary aptamer conformational structures that specifically fit the target. The aptamer-target binding is also reversible and depends strongly on external stimuli such as pH and temperature. The specificity and stimuli-responsiveness of aptamers are highly attractive to biological purification and sensing, which generally involve isolating minute quantities of targets from complex samples with non-specific molecules and impurities present at orders-of-magnitude higher concentrations. We present an aptamer-functionalized microfluidic platform that by design exploits the specificity and temperature-dependent reversibility of aptamers to enable biomolecular purification and sensing. Using the specificity of aptamers, we demonstrate highly selective capture and enrichment of biomolecules. Employing thermally induced, reversible disruption of aptamer-target binding, we accomplish isocratic elution of the captured analytes and regeneration of the aptamer surfaces, thereby eliminating the use of potentially harsh reagents. Using integrated microfluidic control, the eluted analytes are detected in a label-free fashion by mass spectrometric methods.


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


2020 ◽  
Vol 20 (10) ◽  
pp. 831-840
Author(s):  
Weibin Li

Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 350-353 ◽  
Author(s):  
JH Joist ◽  
RK Baker

Abstract We previously demonstrated that platelets can be labeled with 111Inoxine with high labeling efficiency and that 111In is not liberated from labeled platelets during the platelet release reaction or prolonged in vitro storage. In view of these findings, we examined the potential usefulness of loss of 111In from labeled platelets as an indicator or platelet damage by comparing the loss of 111In with that of 51Cr and LDH (in some experiments also with platelet factor 3 availability) under different conditions of platelet injury. When washed human platelets labeled with either 51Cr-chromate or 111In-oxine were exposed to increasing concentrations of detergents (Triton X-100, lysolecithin), threshold, rate, and extent of loss of 111In, 51Cr and, LDH were similar. In contrast, when labeled platelets were depleted of metabolic energy by incubation in glucose-free Tyrode albumin solution or glucose-depleted plasma in the presence of antimycin A and 2-deoxy-D- glucose, loss of 51Cr (and PF3a) occurred earlier and progressed at a faster rate than that of 111In or LDH. Similar results were obtained when platelets were exposed to increasing concentrations of PlA1 antibody, causing complement-mediated immune injury. The findings indicate that with certain agents that cause rapid platelet disruption (lysis), different platelet constituents are lost at similar rates. However, under conditions of more subtle or slowly progressive platelet injury, small molecules such as adenine nucleotides (51Cr) may escape earlier and at faster rates than larger molecules such as LDH or 111In- binding platelet protein. Thus, neither 111In loss nor LDH loss appear to be suitable indicators for sublytic or prelytic platelet injury.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S26
Author(s):  
Jingjing Ma ◽  
Emma Wu ◽  
Ye Li ◽  
William Seibel ◽  
Le Shen ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that compounds that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative small molecules that bind in the claudin-15 pore. AutoDock Vina was initially used to assess rigid docking using small compound databases. The small molecules were analyzed based on binding affinity to the pore and visualized using VMD for their potential blockage of the channel. Clusters of binding modes were identified based on the prominent interacting residues of the protein with the small molecules. We initially screened 10,500 compounds from within the UIC Centre for Drug Discovery and a cross-section of 10,000 compounds from the NCI open compound repository. This initial screen allowed us to identify 2 first-in-class selective claudin-15 blockers with efficacy in MDCK monolayers induced to express claudin-15 and in wildtype duodenum. Next, we screened the entire NCI open compound repository for additional molecules structurally related to our best initially identified molecule and this has allowed us to identify 13 additional molecules that increase TER of claudin-15 expressing MDCK monolayers by 90–160%. Additionally, these molecules possess similar structural components that will be collected in a fragment library and explored through molecular dynamics simulations. We also developed a claudin-2 homology model on which we are performing docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Our study will provide important insight into the role of claudin-dependent cation permeability in fundamental physiology, which we believe will lead to the utility of claudin blockers as a novel and much needed approach to treat diseases such as IBD.


2021 ◽  
pp. 153537022110021
Author(s):  
Subburaman Mohan ◽  
Karthikeyan Muthusamy ◽  
Selvaraman Nagamani ◽  
Chandrasekhar Kesavan

Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the βCʹ-βE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30–65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.


2021 ◽  
pp. 000370282110245
Author(s):  
Qian Zhang ◽  
Minlu Ye ◽  
Lingyan Wang ◽  
Dongmei Jiang ◽  
Shuting Yao ◽  
...  

Multidrug resistance (MDR) is highly associated with poor prognosis of chronic myeloid leukemia (CML). This work aims to explore whether the laser tweezers Raman spectroscopy (LTRS) could be practical in separating adriamycin (ADR) resistance CML cells K562/ADR from its parental cells K562, and to explore the potential mechanisms. Detection of LTRS initially reflected the spectral differences caused by chemoresistance including bands assigned to carbohydrates, amino acid, protein, lipids and nucleic acid. In addition, principal components analysis (PCA) as well as the classification and regression trees (CRT) algorithms showed that the specificity and sensitivity were above 90%. Moreover, the band data-based CRT model and receiver operating characteristic (ROC) curve further determined some important bands and band intensity ratios to be reliable indexes in discriminating K562 chemoresistance status. Finally, we highlighted three metabolism pathways correlated with chemoresistance. This work demonstrates that the label-free LTRS analysis combined with multivariate statistical analyses have great potential to be a novel analytical strategy at the single-cell level for rapid evaluation the chemoresistance status of K562 cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1207
Author(s):  
Hong Jae Cheon ◽  
Quynh Huong Nguyen ◽  
Moon Il Kim

Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


Sign in / Sign up

Export Citation Format

Share Document