scholarly journals Polyphyletic origin, intracellular invasion, and meiotic genes in the putatively asexual agamococcidians (Apicomplexa incertae sedis)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatiana S. Miroliubova ◽  
Timur G. Simdyanov ◽  
Kirill V. Mikhailov ◽  
Vladimir V. Aleoshin ◽  
Jan Janouškovec ◽  
...  

Abstract Agamococcidians are enigmatic and poorly studied parasites of marine invertebrates with unexplored diversity and unclear relationships to other sporozoans such as the human pathogens Plasmodium and Toxoplasma. It is believed that agamococcidians are not capable of sexual reproduction, which is essential for life cycle completion in all well studied parasitic apicomplexans. Here, we describe three new species of agamococcidians belonging to the genus Rhytidocystis. We examined their cell morphology and ultrastructure, resolved their phylogenetic position by using near-complete rRNA operon sequences, and searched for genes associated with meiosis and oocyst wall formation in two rhytidocystid transcriptomes. Phylogenetic analyses consistently recovered rhytidocystids as basal coccidiomorphs and away from the corallicolids, demonstrating that the order Agamococcidiorida Levine, 1979 is polyphyletic. Light and transmission electron microscopy revealed that the development of rhytidocystids begins inside the gut epithelial cells, a characteristic which links them specifically with other coccidiomorphs to the exclusion of gregarines and suggests that intracellular invasion evolved early in the coccidiomorphs. We propose a new superorder Eococcidia for early coccidiomorphs. Transcriptomic analysis demonstrated that both the meiotic machinery and oocyst wall proteins are preserved in rhytidocystids. The conservation of meiotic genes and ultrastructural similarity of rhytidocystid trophozoites to macrogamonts of true coccidians point to an undescribed, cryptic sexual process in the group.

2012 ◽  
Vol 81 (1) ◽  
pp. 43-54 ◽  
Author(s):  
James D. Reimer ◽  
Meifang Lin ◽  
Takuma Fujii ◽  
David J.W. Lane ◽  
Bert W. Hoeksema

The zoanthid genus Sphenopus (Cnidaria: Anthozoa: Zoantharia), like many other brachycnemic zoanthids, is found in shallow subtropical and tropical waters, but is uniquely unitary (solitary, monostomatous), azooxanthellate, and free-living. With sparse knowledge of its phylogenetic position, this study examines the phylogenetic position of Sphenopus within the family Sphenopidae utilizing specimens from southern Taiwan and Brunei collected in 1999-2011, and furthermore analyzes the evolution of its unique character set via ancestral state reconstruction analyses. Phylogenetic analyses surprisingly show Sphenopus to be phylogenetically positioned within the genus Palythoa, which is colonial (polystomatous), zooxanthellate, and attached to solid substrate. Ancestral state reconstruction strongly indicates that the unique characters of Sphenopus have evolved recently within Palythoa and only in the Sphenopuslineage. These results indicate that zoanthid body plans can evolve with rapidity, as in some other marine invertebrates, and that the traditional definitions of zoanthid genera may need reexamination.


Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 67
Author(s):  
Amira Chaabane ◽  
Olivier Verneau ◽  
Louis Du Preez

The polystomes (Monogenea, Polystomatidae) radiated across semi-aquatic tetrapods including all three amphibian orders, freshwater turtles and the hippopotamus. Prior to this study, phylogenetic analyses revealed that the most diverse and widespread genus, Polystoma, was not monophyletic; a lineage comprising four undescribed species from the bladder of Zhangixalus spp. (Rhacophoridae) in Asia occupied a deep phylogenetic position. Regarding vicariance biogeography and molecular dating, the origin of this lineage is correlated with the breakup of Gondwanaland in the Mesozoic period. Based on a Bayesian analysis of four concatenated genes (18S, 28S, COI and 12S) and morphological evidence, one new genus, Indopolystoma n. gen., and three new species, sampled in Japan and China, are described here: Indopolystoma viridi n. sp. from Z. viridis of Japan, Indopolystoma elongatum n. sp. from Z. arboreus of Japan, and Indopolystoma parvum n. sp. from Z. omeimontis of China. Indopolystoma is unique amongst polystome genera infecting anurans by possessing a small haptor relative to the body size, posteriormost marginal hooklet C1 much bigger than hooklets C2–C8 with conspicuous broad blade and guard and a pair of hamuli lacking a deep notch. Eight species of Asian Polystoma, all from rhacophorids, are transferred as Indopolystoma carvirostris (Fan, Li & He, 2008) n. comb., I. hakgalense (Crusz & Ching, 1975) n. comb., I. indicum (Diengdoh & Tandon, 1991) n. comb., I. leucomystax (Zhang & Long, 1987) n. comb., I. mutus (Meng, Song & Ding, 2010) n. comb., I. pingbianensis (Fan, Wang & Li, 2004) n. comb., I. rhacophori (Yamaguti, 1936) n. comb., and I. zuoi (Shen, Wang & Fan, 2013) n. comb.


2017 ◽  
Author(s):  
Jérémy Anquetin

In recent years, no less than five new species of stem-group turtles have been described worldwide. Among them are three new turtles from Middle Jurassic deposits that partially fill a previous temporal and morphological gap in our knowledge of the early evolution of these shelled amniotes: Heckerochelys romani, Condorchelys antiqua and Eileanchelys waldmani. For the first time, the phylogenetic position of these three new species is tested in the context of the two presently competing cladistic models of turtle evolution. The addition of these taxa to each matrix does not favour or alter any of the two opposed hypotheses. However, it is demonstrated here that, by documenting yet unknown stages in the evolution of several morphological structures, these three species give stronger support to the model of an extended phylogenetic stem for turtles. These new lines of evidence include the structure of the vomer, the position of the aditus canalis stapedio-temporalis and of the posterior opening of the canalis cavernosus, and the morphology of the processus interfenestralis of the opisthotic. These characters should be considered for future phylogenetic analyses of turtle interrelationships.Recent discoveries also reinvigorate the debate about the palaeoecology of early turtles. Whereas simple morphological characters (e.g., shell fontanelle, ligamentous bridge, flattened carapace) can be misleading, forelimb proportions and shell bone histology have led to the conclusion that most stem turtles (i.e., Proganochelys quenstedti, Palaeochersis talampayensis, Proterochersis robusta, Kayentachelys aprix and meiolaniids) were terrestrial forms. On the contrary, it is generally accepted that crown-group turtles are ancestrally aquatic. Among the five recently described stem-group turtles, Odontochelys semitestacea and Eileanchelys waldmani have been convincingly interpreted as having aquatic habits, which suggests that basal turtles were ecologically diverse. More investigation is needed, but this will undoubtedly trigger further debate on the primitive ecology of turtles and on the origin of aquatic habits in Testudines (i.e., the crown-group), respectively.


2019 ◽  
Vol 7 (8) ◽  
pp. 240
Author(s):  
Dagmar Jirsová ◽  
Zoltán Füssy ◽  
Jitka Richtová ◽  
Ansgar Gruber ◽  
Miroslav Oborník

In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.


2021 ◽  
Vol 744 ◽  
Author(s):  
Stylianos Chatzimanolis ◽  
Adam J. Brunke

A remarkable new apterous genus of Xanthopygina beetles is described here as Ikaros gen. nov. The new genus includes three new species, I. apteros gen. et sp. nov. from Colombia, I. paramo gen. et sp. nov. from Colombia and I. polygonos gen. et sp. nov. from Venezuela. Phylogenetic analyses using molecular and morphological data were performed to assess the phylogenetic position of Ikaros gen. nov. and whether the three new taxa formed a monophyletic group. All analyses, including those with aptery-associated characters removed, strongly supported the monophyly of Ikaros gen. nov. The genus could not be confidently resolved as a member of any of the existing genus-group lineages, likely due to a lack of morphological signal in the backbone of the tree. Further analyses, ideally with molecular data, are needed to determine the position of Ikaros gen. nov.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 995-1010 ◽  
Author(s):  
Rafael Zardoya ◽  
Axel Meyer

The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3′ end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNA, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


Zootaxa ◽  
2011 ◽  
Vol 2918 (1) ◽  
pp. 15 ◽  
Author(s):  
I. WESLEY GAPP ◽  
BRUCE S. LIEBERMAN ◽  
MICHAEL C. POPE ◽  
KELLY A. DILLIARD

The Early Cambrian olenelline trilobites are a diverse clade and have been the subject of several phylogenetic analyses. Here, three new species of Bradyfallotaspis Fritz, 1972 (B. coriae, B. nicolascagei, and B. sekwiensis) and one new species of Nevadia Walcott, 1910 (N. saupeae) are described from the Sekwi Formation of the Mackenzie Mountains, Northwest Territories, Canada. In addition, new specimens potentially referable to Nevadia ovalis McMenamin, 1987 were recovered that may expand that species’ geographic range, which was thought to be restricted to Sonora, Mexico. The results of a phylogenetic analysis incorporating several olenelline taxa, including Judomia absita Fritz, 1973 from the Sekwi Formation, are also presented herein. This species has been assigned to various olenelline genera, including Judomia Lermontova, 1951 and Paranevadella Palmer & Repina, 1993. Phylogenetic analysis suggests this species is closely related to Judomia tera Lazarenko, 1960 from Siberia. This phylogenetic relationship provides further support for the hypothesis that a close biogeographic relationship existed between Laurentia and Siberia during the Cambrian.


Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3199-3208 ◽  
Author(s):  
Maryam Ansari ◽  
S. Mohsen Taghavi ◽  
Sadegh Zarei ◽  
Soraya Mehrb-Moghadam ◽  
Hamzeh Mafakheri ◽  
...  

In this study, we provide a polyphasic characterization of 18 Pseudomonas spp. strains associated with alfalfa leaf spot symptoms in Iran. All of the strains were pathogenic on alfalfa, although the aggressiveness and symptomology varied among the strains. All strains but one were pathogenic on broad bean, cucumber, honeydew, and zucchini, whereas only a fraction of the strains were pathogenic on sugar beet, tomato, and wheat. Syringomycin biosynthesis genes (syrB1 and syrP) were detected using the corresponding PCR primers in all of the strains isolated from alfalfa. Phylogenetic analyses using the sequences of four housekeeping genes (gapA, gltA, gyrB, and rpoD) revealed that all of the strains except one (Als34) belong to phylogroup 2b of P. syringae sensu lato, whereas strain Als34 placed within phylogroup 1 close to the type strain of P. syringae pv. apii. Among the phylogroup 2b strains, nine strains were phylogenetically close to the P. syringae pv. aptata clade, whereas the remainder were scattered among P. syringae pv. atrofaciens and P. syringae pv. syringae strains. Pathogenicity and host range assays of the bacterial strains evaluated in this study on a set of taxonomically diverse plant species did not allow us to assign a “pathovar” status to the alfalfa strains. However, these results provide novel insight into the host range and phylogenetic position of the alfalfa-pathogenic members of P. syringae sensu lato, and they reveal that phenotypically and genotypically heterogeneous strains of the pathogen cause bacterial leaf spot of alfalfa.


Sign in / Sign up

Export Citation Format

Share Document