scholarly journals Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José G. Vallarino ◽  
Szymon Kubiszewski-Jakubiak ◽  
Stephanie Ruf ◽  
Margit Rößner ◽  
Stefan Timm ◽  
...  

Abstract The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Duyên Prodhomme ◽  
Josep Valls Fonayet ◽  
Cyril Hévin ◽  
Céline Franc ◽  
Ghislaine Hilbert ◽  
...  

Abstract Background Grafting with rootstocks is essential for the culture of many perennial fruit crops and is increasing being used in the production of annual fruits and vegetables. Our previous work based on microarrays showed that transcripts encoding enzymes of both primary and secondary metabolism were differentially expressed during graft union formation in both homo-grafts (a genotype grafted with itself) and hetero-grafts (two different genotypes grafted together). The aim of this study was to profile primary and secondary metabolites, and quantify the activity of phenylalanine ammonia lyase (PAL) and neutral invertase (NI) in the scion and rootstock tissues and the graft interface of homo and hetero-grafts of grapevine 1 month after grafting. Table-top grafting was done on over-wintering stems (canes) of grapevine and the graft interface tissues (containing some woody stem tissues and callus) were compared to the surrounding rootstock and scion tissues. The objective was to identify compounds involved in graft union formation and hetero-grafting responses. Results A total of 54 compounds from primary and secondary metabolism (19 amino acids, five primary and 30 secondary compounds metabolites) and the activity of two enzymes were measured. The graft interface was associated with an increase in the accumulation of the branched-chain amino acids, basic amino acids, certain stilbene compounds and higher PAL and NI activity in comparison to the surrounding woody stem tissues. Some amino acids and stilbenes were identified as being accumulated differently between the graft interfaces of the scion/rootstock combinations in a manner which was unrelated to their concentrations in the surrounding woody stem tissues. Conclusions This study revealed the modification of primary metabolism to support callus cell formation and the stimulation of stilbene synthesis at the graft interface, and how these processes are modified by hetero-grafting. Knowledge of the metabolites and/or enzymes required for successful graft union formation offer us the potential to identify markers that could be used by nurseries and researchers for selection and breeding purposes.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Manu Shree ◽  
Shyam K. Masakapalli

The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C5] xylose or 40% [13C6] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.


2016 ◽  
Vol 96 ◽  
pp. 86-96 ◽  
Author(s):  
Guoqing Hu ◽  
Hongbo He ◽  
Wei Zhang ◽  
Jinsong Zhao ◽  
Jiehua Cui ◽  
...  
Keyword(s):  

2014 ◽  
Vol 94 (6) ◽  
pp. 1009-1012 ◽  
Author(s):  
David R. Guevara ◽  
Yong-Mei Bi ◽  
Steven J. Rothstein

Guevara, D. R., Bi, Y.-M. and Rothstein, S. J. 2014. Identification of regulatory genes to improve nitrogen use efficiency. Can. J. Plant Sci. 94: 1009–1012. Crop production on soils containing sub-optimal levels of nitrogen (N) severely compromises yield potential. The development of crop varieties displaying high N use efficiency (NUE) is necessary in order to optimize N fertilizer use, and reduce the environmental damage caused by the current excessive application of N in agricultural areas. Genome-wide microarray analysis of rice plants grown under N-limiting environments was performed to identify NUE candidate genes. An early nodulin gene, OsENOD93-1, was strongly up-regulated during plant growth under low N. A constitutive Ubiquitin promoter was used to drive the expression of the OsENOD93-1 gene in transgenic plants to determine the importance of OsENOD93-1 for rice NUE. Transgenic rice plants over-expressing the OsENOD93-1 gene achieved ∼23% and 16% more yield and biomass, respectively, compared with wild-type plants when grown under N-limitation conditions. OsENOD93-1-OX transgenic plants accumulated a higher amount of total amino acids in the roots and xylem sap under N stress, suggesting that OsENOD93-1 plays a role in the transportation of amino acids. Taken together, we demonstrate that an effective way to identify NUE gene candidates involves both transcriptional profiling coupled with a transgenic validation approach to improve complex traits such as NUE in important crops.


2021 ◽  
Vol 4 (2) ◽  
pp. 1021-1033
Author(s):  
Nguyen Thi Loan ◽  
Tran Thi My Can

To study the effects of cover methods and nitrogen (N) levels on the growth and yield components of tomato Cv. Pear F1, field experiments with a 4x3 factorial design were conducted in the 2019 spring and winter seasons using a randomized complete block design with three replications. The cover methods included four treatments: bare soil (BS), black plastic mulch (BPM), transparent polypropylene row cover (RC), and a combination of BPM and RC (BPMRC) with the RC removed approximately 30 days after transplanting. Nitrogen (N) was applied at three levels (150, 180, and 210 kg N ha-1). Using BPM and RC generally led to an increased air temperature, air humidity, soil moisture, and soil temperature compared to the BS treatment. Higher N rates (180 and 210 kg N ha-1) did not result  in different tomato fruit sizes and fruit weights but positively increased fruit yield and quality (Brix values and fruit dry weight) as compared to the 150 kg N ha-1 addition. The cover methods positively affected the yield components and fruit yield of tomato as well as the fruit characteristics compared to the BS treatment. Using cover materials (BPM and RC) combined with a higher N application significantly increased the yield attributes and fruit yield. The highest fruit yield was achieved under the mulching treatment by black plastic (BPM treatment) combined with a 210 kg N ha-1 application, resulting in 50.90 tons ha-1 in the spring and 58.27 tons ha-1 in the winter.


2020 ◽  
Vol 30 (5) ◽  
pp. 624-631
Author(s):  
D. Allen Pattillo ◽  
Wheeler G. Foshee ◽  
Eugene K. Blythe ◽  
Jeremy Pickens ◽  
Daniel Wells ◽  
...  

Raised bed production trials were conducted to evaluate the effectiveness of effluent from a biofloc-style recirculating aquaculture system producing nile tilapia (Oreochromis niloticus) as nutrient-rich irrigation water for fall ‘Celebrity’ tomato (Solanum lycopersicum) production. The objective of this study was to provide baseline vegetable production data and justification for using aquaculture effluent as a water and nutrient resource. The experiment was a split-plot, randomized block design with three treatments: aquaculture effluent, granular fertilizer, and fertigation. Tomato seeds were sown in June, transplanted in August, and grown until Oct. 2019 in nine replicated raised beds. Conventional field tomato production practices were followed throughout the trial, and data were collected for tomato fruit yield, market quality, size, leaf greenness (SPAD), and foliar nutrient analysis. Fruit yield was similar between fertigated and aquaculture effluent treatments, with granular fertilizer resulting in yield that was significantly lower (P ≤ 0.033). SPAD measurements were similar among treatments. All nutrients met or exceeded sufficiency ranges. Foliar nutrient analysis revealed no significant difference for nitrogen, phosphorus, potassium, magnesium, calcium, boron, zinc, manganese, and iron among treatments. Sulfur and copper levels were significantly lower (P < 0.05) with aquaculture effluent treatment as compared with the granular and fertigated treatments. Overall, tomato production using aquaculture effluent as a water and nutrient supplement produced similar yields to commercial practices, making it potentially viable for producers.


2017 ◽  
Vol 5 (1) ◽  
pp. 77 ◽  
Author(s):  
Mongi Melki ◽  
Abir Gsouri ◽  
Mariem Bouhadida ◽  
Hnya Chograni ◽  
Mohsen Rezgui

Five Tunisian varieties of Kabuli chickpea were characterized based on agro morphological, molecular and biochemical parameters to investigate their genetic variability and yield potential. Randomized complete block design field trials were carried out in the upper semi-arid region of Kef in Tunisia during the 2013-2014 seasons. Data analysis showed significant differences between genotypes for several parameters. The results indicated that these genotypes could be set into two different groups. The first group composed of Bochra and Chetoui genotypes. Kasseb, Neyer and Beja1 were in the second group. Genotypes in each group were closely related to each other according to their common morphological characters such as pod number, one hundred seeds weight and yield.  Chetoui and Kasseb varieties are later in comparison to other varieties. Genetic diversity was studied using simple sequence repeat (SSR) markers. Four loci (TA64, TA71, TA96, TA194) were multiallelic. Whereas while two loci (TA72, GAA47) were monomorphic. Polymorphism analysis showed a phylogeny related to genotypes differentiation according to their relatives, origin and several morphological characters. Bochra variety had high amino acids content followed by Chetoui variety. All the varieties were deficient in sulfur amino acids. Chickpeas protein contents were variable and high ranging from 18% to 25%.


1963 ◽  
Vol 41 (2) ◽  
pp. 435-454 ◽  
Author(s):  
O. Gonda ◽  
J. H. Quastel

The effects of acetylsalicylate and of 2,4-dinitrophenol on the metabolism and transport processes of rat brain cortex slices incubated at 37° in glucose–Ringer media under various conditions have been investigated. The following processes are suppressed by acetylsalicylate (5 mM) or dinitrophenol (0.05 mM) to a much greater extent in media containing 105 mM KCl or 10 mM NH4Cl (which stimulate brain respiration) than in normal media:(a) respiration;(b) incorporation of phosphate into ATP and ADP;(c) conversion of creatine to phosphocreatine;(d) uptake of glutamate or of creatine from the medium to the tissue.The two drugs increase the leakage of amino acids from rat brain cortex slices into the medium, the effects being greatest in the presence of 105 mM KCl or 5 mM glutamate or in the absence of glucose. They change the yields of labelled amino acids from labelled glucose or labelled glutamate.Labelled glutamate is converted to labelled aspartate, γ-aminobutyrate and glutamine in rat brain cortex slices, the addition of glucose bringing about increased yields of glutamine and γ-aminobutyrate and a decreased yield of aspartate. The formation of labelled glutamine from either labelled glutamate or from labelled glucose is suppressed by acetylsalicylate or dinitrophenol, the effects being greater in the presence of 105 mM KCl or 10 mM NH4Cl.The increased sensitivity of the stimulated tissue metabolism to the drugs, in the presence of high K+, or of NH4+or of glutamate, is probably explained by the fact that there is a fall, under these conditions, in the tissue phosphocreatine level. There is, therefore, less reserve phosphocreatine to maintain the level of ATP when neuronal oxidative phosphorylation is suppressed by the addition of acetylsalicylate or of dinitrophenol.


1972 ◽  
Vol 130 (4) ◽  
pp. 919-925 ◽  
Author(s):  
Roy L. Whistler ◽  
William C. Lake

5-Thio-d-glucopyranose, the nearest analogue of normal d-glucose, which is proving a useful tool in examinations of d-glucose biochemistry, affects active and facilitated-diffusion transport processes. 5-Thio-d-glucose is readily transported in rabbit kidney-cortex slices and reaches a tissue/medium ratio of 6.5 within 40min. The sulphur analogue shows typical saturation kinetics with a Km value of 2.4mm and Vmax. value of 70μmol/h per g of cell water. Uptake of 5-thio-d-glucose is phlorrhizin-sensitive, Na+-dependent and energy-dependent. d-Galactose and methyl α-d-glucopyranoside transport is competitively inhibited by 5-thio-d-glucose with Ki values of 4.8 and 9.7mm respectively. 5-Thio-d-glucose thus shows all of the characteristics of active transport in kidney cortex. Transport of neutral amino acids in rat kidney cortex is inhibited by 5-thio-d-glucose. Thus 5.6mm-5-thio-d-glucose causes a 25–30% inhibition of the transport of glycine and the non-metabolized amino acids cycloleucine and α-aminoisobutyric acid. 5-Thio-d-glucose is freely taken up by the facilitated-diffusion transport system in rat diaphragm muscle. The sulphur analogue inhibits the transport of d-xylose in this tissue but has no effect on the uptake of d-arabinose. It is concluded that the ring heteroatom is not an effector of binding in the transport processes examined and causes no important alteration in the conformation of the sugar. The diabetogenic action produced by 5-thio-d-glucose is due, in part, to the ability of the analogue to interfere with cellular transport processes that use d-glucose.


Sign in / Sign up

Export Citation Format

Share Document