scholarly journals Large photocurrent density enhancement assisted by non-absorbing spherical dielectric nanoparticles in a GaAs layer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhaskar Singh ◽  
Mohammed M. Shabat ◽  
Daniel M. Schaadt

Abstract Herein, we report a theoretical investigation of large photocurrent density enhancement in a GaAs absorber layer due to non-absorbing spherical dielectric (SiO2) nanoparticles-based antireflection coating. The nanoparticles are embedded in a dielectric matrix (SiN) which improves the antireflection property of SiN ($$\lambda /4$$ λ / 4 coating) and let to pass more photons into the GaAs layer. The improvement is noticed omnidirectional and the highest is more than 100% at 85° angle of incidence with the nanoparticles’ surface filling density of 70%. Sunrise to sunset calculation of normalized photocurrent density over the course of a year have also shown improvements in the nanoparticles’ case.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manvika Singh ◽  
Rudi Santbergen ◽  
Indra Syifai ◽  
Arthur Weeber ◽  
Miro Zeman ◽  
...  

Abstract Since single junction c-Si solar cells are reaching their practical efficiency limit. Perovskite/c-Si tandem solar cells hold the promise of achieving greater than 30% efficiencies. In this regard, optical simulations can deliver guidelines for reducing the parasitic absorption losses and increasing the photocurrent density of the tandem solar cells. In this work, an optical study of 2, 3 and 4 terminal perovskite/c-Si tandem solar cells with c-Si solar bottom cells passivated by high thermal-budget poly-Si, poly-SiOx and poly-SiCx is performed to evaluate their optical performance with respect to the conventional tandem solar cells employing silicon heterojunction bottom cells. The parasitic absorption in these carrier selective passivating contacts has been quantified. It is shown that they enable greater than 20 mA/cm2 matched implied photocurrent density in un-encapsulated 2T tandem architecture along with being compatible with high temperature production processes. For studying the performance of such tandem devices in real-world irradiance conditions and for different locations of the world, the effect of solar spectrum and angle of incidence on their optical performance is studied. Passing from mono-facial to bi-facial tandem solar cells, the photocurrent density in the bottom cell can be increased, requiring again optical optimization. Here, we analyse the effect of albedo, perovskite thickness and band gap as well as geographical location on the optical performance of these bi-facial perovskite/c-Si tandem solar cells. Our optical study shows that bi-facial 2T tandems, that also convert light incident from the rear, require radically thicker perovskite layers to match the additional current from the c-Si bottom cell. For typical perovskite bandgap and albedo values, even doubling the perovskite thickness is not sufficient. In this respect, lower bandgap perovskites are very interesting for application not only in bi-facial 2T tandems but also in related 3T and 4T tandems.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750084 ◽  
Author(s):  
Timur Sh. Atabaev ◽  
Dae Hun Lee ◽  
Nguyen Hoa Hong

A bilayered TiO2/CuO photoelectrode was fabricated on a fluorine-doped tin oxide FTO substrate by spin-coating and pulsed laser deposition methods. The prepared bilayered system was assessed as a photoelectrode for solar water splitting. The fabricated TiO2/CuO photoelectrode exhibited a higher photocurrent density (0.022[Formula: see text]mA/cm2 at 1.23[Formula: see text]V vs. RHE) compared to bare TiO2 photoelectrode (0.013[Formula: see text]mA/cm2 at 1.23[Formula: see text]V vs. RHE). This photocurrent density enhancement was attributed to the improved charge separation combined with the improved sunlight harvesting efficiency of a bilayered structure.


Author(s):  
David C. Joy

Electron channeling patterns (ECP) were first found by Coates (1967) while observing a large bulk, single crystal of silicon in a scanning electron microscope. The geometric pattern visible was shown to be produced as a result of the changes in the angle of incidence, between the beam and the specimen surface normal, which occur when the sample is examined at low magnification (Booker, Shaw, Whelan and Hirsch 1967).A conventional electron diffraction pattern consists of an angularly resolved intensity distribution in space which may be directly viewed on a fluorescent screen or recorded on a photographic plate. An ECP, on the other hand, is produced as the result of changes in the signal collected by a suitable electron detector as the incidence angle is varied. If an integrating detector is used, or if the beam traverses the surface at a fixed angle, then no channeling contrast will be observed. The ECP is thus a time resolved electron diffraction effect. It can therefore be related to spatially resolved diffraction phenomena by an application of the concepts of reciprocity (Cowley 1969).


Author(s):  
David C. Joy

In a crystalline solid the regular arrangement of the lattice structure influences the interaction of the incident beam with the specimen, leading to changes in both the transmitted and backscattered signals when the angle of incidence of the beam to the specimen is changed. For the simplest case the electron flux inside the specimen can be visualized as the sum of two, standing wave distributions of electrons (Fig. 1). Bloch wave 1 is concentrated mainly between the atom rows and so only interacts weakly with them. It is therefore transmitted well and backscattered weakly. Bloch wave 2 is concentrated on the line of atom centers and is therefore transmitted poorly and backscattered strongly. The ratio of the excitation of wave 1 to wave 2 varies with the angle between the incident beam and the crystal structure.


Author(s):  
W. E. Lee ◽  
A. H. Heuer

IntroductionTraditional steatite ceramics, made by firing (vitrifying) hydrous magnesium silicate, have long been used as insulators for high frequency applications due to their excellent mechanical and electrical properties. Early x-ray and optical analysis of steatites showed that they were composed largely of protoenstatite (MgSiO3) in a glassy matrix. Recent studies of enstatite-containing glass ceramics have revived interest in the polymorphism of enstatite. Three polymorphs exist, two with orthorhombic and one with monoclinic symmetry (ortho, proto and clino enstatite, respectively). Steatite ceramics are of particular interest a they contain the normally unstable high-temperature polymorph, protoenstatite.Experimental3mm diameter discs cut from steatite rods (∼10” long and 0.5” dia.) were ground, polished, dimpled, and ion-thinned to electron transparency using 6KV Argon ions at a beam current of 1 x 10-3 A and a 12° angle of incidence. The discs were coated with carbon prior to TEM examination to minimize charging effects.


Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


Author(s):  
K. Ogura ◽  
A. Ono ◽  
S. Franchi ◽  
P.G. Merli ◽  
A. Migliori

In the last few years the development of Scanning Electron Microscopes (SEM), equipped with a Field Emission Gun (FEG) and using in-lens specimen position, has allowed a significant improvement of the instrumental resolution . This is a result of the fine and bright probe provided by the FEG and by the reduced aberration coefficients of the strongly excited objective lens. The smaller specimen size required by in-lens instruments (about 1 cm, in comparison to 15 or 20 cm of a conventional SEM) doesn’t represent a serious limitation in the evaluation of semiconductor process techniques, where the demand of high resolution is continuosly increasing. In this field one of the more interesting applications, already described (1), is the observation of superlattice structures.In this note we report a comparison between secondary electron (SE) and backscattered electron (BSE) images of a GaAs / AlAs superlattice structure, whose cross section is reported in fig. 1. The structure consist of a 3 nm GaAs layer and 10 pairs of 7 nm GaAs / 15 nm AlAs layers grown on GaAs substrate. Fig. 2, 3 and 4 are SE images of this structure made with a JEOL JSM 890 SEM operating at an accelerating voltage of 3, 15 and 25 kV respectively. Fig. 5 is a 25 kV BSE image of the same specimen. It can be noticed that the 3nm layer is always visible and that the 3 kV SE image, in spite of the poorer resolution, shows the same contrast of the BSE image. In the SE mode, an increase of the accelerating voltage produces a contrast inversion. On the contrary, when observed with BSE, the layers of GaAs are always brighter than the AlAs ones , independently of the beam energy.


Sign in / Sign up

Export Citation Format

Share Document