scholarly journals Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jihyeon Lee ◽  
Song-Ho Chong ◽  
Sihyun Ham

AbstractProtein aggregation is a major concern in biotherapeutic applications of monoclonal antibodies. Introducing charged mutations is among the promising strategies to improve aggregation resistance. However, the impact of such mutations on solubilizing activity depends largely on the inserting location, whose mechanism is still not well understood. Here, we address this issue from a solvation viewpoint, and this is done by analyzing how the change in solvation free energy upon charged mutation is composed of individual contributions from constituent residues. To this end, we perform molecular dynamics simulations for a number of antibody mutants and carry out the residue-wise decomposition of the solvation free energy. We find that, in addition to the previously identified “global” principle emphasizing the key role played by the protein total net charge, a local net charge within $$\sim$$ ∼ 15 Å from the mutation site exerts significant effects. For example, when the net charge of an antibody is positive, the global principle states that introducing a positively charged mutation will lead to more favorable solvation. Our finding further adds that an even more optimal mutation can be done at the site around which more positively charged residues and fewer negatively charged residues are present. Such a “local” design principle accounts for the location dependence of charged mutations, and will be useful in producing aggregation-resistant antibodies.

Biopolymers ◽  
2007 ◽  
Vol 90 (3) ◽  
pp. 369-383 ◽  
Author(s):  
Ziqing Jiang ◽  
Adriana I. Vasil ◽  
John D. Hale ◽  
Robert E. W. Hancock ◽  
Michael L. Vasil ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
David Da Costa ◽  
Chloé Exbrayat-Héritier ◽  
Basile Rambaud ◽  
Simon Megy ◽  
Raphaël Terreux ◽  
...  

Abstract Background After the golden age of antibiotic discovery, bacterial infections still represent a major challenge for public health worldwide. The biofilm mode of growth is mostly responsible for chronic infections that current therapeutics fail to cure and it is well-established that novel strategies must be investigated. Particulate drug delivery systems are considered as a promising strategy to face issues related to antibiotic treatments in a biofilm context. Particularly, poly-lactic acid (PLA) nanoparticles present a great interest due to their ability to migrate into biofilms thanks to their submicronic size. However, questions still remain unresolved about their mode of action in biofilms depending on their surface properties. In the current study, we have investigated the impact of their surface charge, firstly on their behavior within a bacterial biofilm, and secondly on the antibiotic delivery and the treatment efficacy. Results Rifampicin-loaded PLA nanoparticles were synthetized by nanoprecipitation and characterized. A high and superficial loading of rifampicin, confirmed by an in silico simulation, enabled to deliver effective antibiotic doses with a two-phase release, appropriate for biofilm-associated treatments. These nanoparticles were functionalized with poly-l-lysine, a cationic peptide, by surface coating inducing charge reversal without altering the other physicochemical properties of these particles. Positively charged nanoparticles were able to interact stronger than negative ones with Staphylococcus aureus, under planktonic and biofilm modes of growth, leading to a slowed particle migration in the biofilm thickness and to an improved retention of these cationic particles in biofilms. While rifampicin was totally ineffective in biofilms after washing, the increased retention capacity of poly-l-lysine-coated rifampicin-loaded PLA nanoparticles has been associated with a better antibiotic efficacy than uncoated negatively charged ones. Conclusions Correlating the carrier retention capacity in biofilms with the treatment efficacy, positively charged rifampicin-loaded PLA nanoparticles are therefore proposed as an adapted and promising approach to improve antibiotic delivery in S. aureus biofilms.


2021 ◽  
Vol 9 (2) ◽  
pp. 183
Author(s):  
Xuehua Ma ◽  
Yi Zhou ◽  
Luyi Yang ◽  
Jianfeng Tong

Rapid development of the economy increased marine litter around Zhoushan Island. Social-ecological scenario studies can help to develop strategies to adapt to such change. To investigate the present situation of marine litter pollution, a stratified random sampling (StRS) method was applied to survey the distribution of marine coastal litters around Zhoushan Island. A univariate analysis of variance was conducted to access the amount of litter in different landforms that include mudflats, artificial and rocky beaches. In addition, two questionnaires were designed for local fishermen and tourists to provide social scenarios. The results showed that the distribution of litter in different landforms was significantly different, while the distribution of litter in different sampling points had no significant difference. The StRS survey showed to be a valuable method for giving a relative overview of beach litter around Zhoushan Island with less effort in a future survey. The questionnaire feedbacks helped to understand the source of marine litter and showed the impact on the local environment and economy. Based on the social-ecological scenarios, governance recommendations were provided in this paper.


2021 ◽  
Vol 42 (11) ◽  
pp. 787-792
Author(s):  
Alexei Nikitin ◽  
Vladislava Milchevskaya ◽  
Alexander Lyubartsev

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 633
Author(s):  
Yeong Jun Kim ◽  
Ui Soon Jang ◽  
Sandrine M. Soh ◽  
Joo-Youn Lee ◽  
Hye-Ra Lee

A new variant of SARS-CoV-2 B.1.351 lineage (first found in South Africa) has been raising global concern due to its harboring of multiple mutations in the spike that potentially increase transmissibility and yield resistance to neutralizing antibodies. We here tested infectivity and neutralization efficiency of SARS-CoV-2 spike pseudoviruses bearing particular mutations of the receptor-binding domain (RBD) derived either from the Wuhan strains (referred to as D614G or with other sites) or the B.1.351 lineage (referred to as N501Y, K417N, and E484K). The three different pseudoviruses B.1.351 lineage related significantly increased infectivity compared with other mutants that indicated Wuhan strains. Interestingly, K417N and E484K mutations dramatically enhanced cell–cell fusion than N501Y even though their infectivity were similar, suggesting that K417N and E484K mutations harboring SARS-CoV-2 variant might be more transmissible than N501Y mutation containing SARS-CoV-2 variant. We also investigated the efficacy of two different monoclonal antibodies, Casirivimab and Imdevimab that neutralized SARS-CoV-2, against several kinds of pseudoviruses which indicated Wuhan or B.1.351 lineage. Remarkably, Imdevimab effectively neutralized B.1.351 lineage pseudoviruses containing N501Y, K417N, and E484K mutations, while Casirivimab partially affected them. Overall, our results underscore the importance of B.1.351 lineage SARS-CoV-2 in the viral spread and its implication for antibody efficacy.


2021 ◽  
Vol 13 (14) ◽  
pp. 7736
Author(s):  
Erin Gallay ◽  
Alisa Pykett ◽  
Constance Flanagan

Insofar as race, class, and gender have profound effects on people’s environmental experiences, and consequently their activism, the environmental field needs more work on the environmental experiences and insights of groups whose voices have been missing, including youth of color who live in urban areas in the U.S. In this paper, we focus on African American and Latinx students engaged in environmental projects in their urban communities and the impact of such projects on promoting pro-environmental leadership, agency, and behavior. We draw from written reflections and focus group interviews of several hundred 4th–12th graders (majority middle- and high-school students) who participated in place-based civic science projects. Thematic analyses of student responses found that students engaged in work on local environmental issues cultivated an appreciation for the natural world and an understanding of human-nature interdependence and the ties between the local environment and their communities’ health. Through taking action with others in their communities, students viewed themselves as contributors to their communities and started to form environmental identities in ways that are not traditionally measured. Findings point to the need for forms of environmental education that are contextually grounded and centered on environmental justice in urban areas.


Author(s):  
Marta Torres-Ferrús ◽  
Victor J. Gallardo ◽  
Alicia Alpuente ◽  
Edoardo Caronna ◽  
Eulalia Gine-Cipres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document