scholarly journals Diagenetic processes in Quaternary fossil bones from tropical limestone caves

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Vieira de Sousa ◽  
Estevan Eltink ◽  
Raquel Aline Pessoa Oliveira ◽  
Jorlandio Francisco Félix ◽  
Luciano de Moura Guimarães

AbstractQuaternary fossils from limestone caves bear various diagenetic features due to the complex nature of sedimentary processes. However, few studies have addressed the problem of diagenetic changes in fossils from tropical-wet environments. We study Quaternary fossil bones from different sites of a tropical limestone cave in northeastern Brazil. These fossils show diverse diagenetic features. The approach encompassed the use of scanning electron microscopy, Raman spectroscopy, and X-ray diffraction to understand the modification of the fossil bone structure, chemical composition, and mineral assemblage during the diagenesis processes. We describe a model for fossil diagenesis in tropical limestone caves that involves early and advanced diagenetic stages, which produce two routes with different endmembers. The diagenesis in the cave alters the crystallinity and ordering of hydroxyapatite. The recrystallization of hydroxyapatite appears to be strongly influenced by dripping water that is rich in calcium carbonate, which leads to crystal formation with higher crystallinity. In the absence of calcium carbonate, hydroxyapatite diagenesis involves crystal growth but not necessarily dissolution of the original material, which enables remarkable preservation of the biological structure.

2012 ◽  
Vol 178-181 ◽  
pp. 676-679 ◽  
Author(s):  
Tao Duan ◽  
Wen Kun Zhu

The effects of temperature, pH, precipitation time, reactant concentration, the crystal formation additive on the yield of calcium carbonate precipitation induced by bacillus pasteurii were investigated through orthogonal test. The morphology and structure of the calcium carbonate were characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (IR) and powder X-ray diffraction (XRD). The results showed that the optimum conditions of calcium carbonate precipitation induced by bacillus pasteurii were temperature of 40oC, pH of 8, precipitation time of 3 d, Ca2+ of 1.5 mol/L, and Mg2+ of 0.05 mol/L. The crystal of calcium carbonate was calcites or mixture of calcites and vaterite. Its morphology and packing density were changed by different external conditions.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Author(s):  
Fikri Alatas ◽  
Fahmi Abdul Azizsidiq ◽  
Titta Hartyana Sutarna ◽  
Hestyari Ratih ◽  
Sundani Nurono Soewandhi

An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid (MAL). Construction of phase solubility curve of ABZ in MAL solution and crystal morphological observations after recrystallization in the acetone-ethanol (9:1) mixture were performed for initial prediction of multicomponent crystal formation. ABZ-MAL multicomponent crystal was prepared by wet grinding or also known as solvent-drop grinding (SDG) with acetone-ethanol (9:1) mixture as a solvent followed by characterization of the multicomponent crystal formation by powder X-ray diffraction and Fourier transform infrared (FTIR) methods. The solubility of ABZ-MAL multicomponent crystal was tested in water at ambient temperature and in pH 1.2, 4.5 and 6.8 of buffered solutions at 37°C. The phase solubility curve of the ABZ in the MAL solution showed type Bs. The ABZ-MAL mixture has a different crystalline morphology than pure ABZ and MAL after recrystallization in the acetone-ethanol mixture (9:1). The powder X-ray diffraction pattern and the FTIR spectrum of ABZ-MAL from SDG different from intact ABZ and MAL powder X-ray diffraction patterns and these results can indicate the ABZ-MAL multicomponent crystal formation. The ABZ-MAL multicomponent crystal has better solubility than pure ABZ in all media used. These results can be concluded that ABZ-MAL multicomponent crystal can be prepared by solvent-drop grinding method with acetone-ethanol (9:1) mixture as a solvent and can increase the solubility of albendazole.


2014 ◽  
Vol 997 ◽  
pp. 542-545
Author(s):  
Yan Ru Chen ◽  
Yi Chen Lu ◽  
Xiao Min Lian ◽  
Chao Yang Li ◽  
Shui Lin Zheng

Superfine ground calcium carbonate (GCC) produced by carbonate minerals is a widely used inorganic powder material. In order to get a finer GCC powder with narrow distribution span, the effect of rotational speed and media density on ground GCC were studied by dry grinding GCC in a planetary ball mill under different rotational speed and various media density. The grinding limit-particle size and distribution of grinding calcium carbonate were measured by centrifugal sedimentation granulometer. The structure of GCC was measured by X-ray diffraction. The result shows that low rotational speed and high-density media is conducive to get a product with smaller particle size and narrow size distribution; crystal plane (012) and (122) are more stable than (018) and (116).


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 231-238 ◽  
Author(s):  
Austin Long ◽  
A T Wilson ◽  
R D Ernst ◽  
B H Gore ◽  
P E Hare

Modern bone contains ca 25% protein material, most of which is collagen. Amino acids separated from collagen isolated from bone are suitable for 14C dating of fossil bone, but attempts to carry out this procedure on bones seriously depleted in protein can yield erroneous 14C dates. Amino-acid analysis of fossil bone gives quantitative information on the degree of preservation of its organic component. Also, the relative abundance of the amino-acid components reveal the degree to which the collagen-like pattern has been altered. Alteration may be caused by addition of extraneous material. A 1mg sample of bone material is sufficient for this preliminary analysis. We have developed a series of acceptance criteria for whether a particular specimen is likely to yield the correct 14C age. 14C dating of fossil bones not seriously depleted in protein is a straightforward procedure and yields reliable dates.


2019 ◽  
Vol 966 ◽  
pp. 200-203
Author(s):  
Zaenal Arifin ◽  
Triwikantoro ◽  
Bintoro Anang Subagyo ◽  
Mochamad Zainuri ◽  
Darminto

Abstract. In this study, the CaCO3 powder has been successfully synthesized by mixing CaCl2 from natural limestone and Na2CO3 in the same molar ratio. The mixing process of solutions was carried out by employing the molar contents of 0.125, 0.25, 0.375 and 0.5M at varying temperatures of 30, 40, 60 and 80ᴼC. The produced CaCO3 microparticles were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The highest content of aragonite phase with morphology rod-like of the samples is around 29 wt%, resulting from the process using solution of 0.125 M at 80 ᴼC. While at 30 ᴼC and 40 ᴼC produced 100 wt% calcite phase.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael B. Toffolo ◽  
Giulia Ricci ◽  
Luisa Caneve ◽  
Ifat Kaplan-Ashiri

Abstract In nature, calcium carbonate (CaCO3) in the form of calcite and aragonite nucleates through different pathways including geogenic and biogenic processes. It may also occur as pyrogenic lime plaster and laboratory-precipitated crystals. All of these formation processes are conducive to different degrees of local structural order in CaCO3 crystals, with the pyrogenic and precipitated forms being the least ordered. These variations affect the manner in which crystals interact with electromagnetic radiation, and thus formation processes may be tracked using methods such as X-ray diffraction and infrared spectroscopy. Here we show that defects in the crystal structure of CaCO3 may be detected by looking at the luminescence of crystals. Using cathodoluminescence by scanning electron microscopy (SEM-CL) and laser-induced fluorescence (LIF), it is possible to discern different polymorphs and their mechanism of formation. We were thus able to determine that pyrogenic calcite and aragonite exhibit blue luminescence due to the incorporation of distortions in the crystal lattice caused by heat and rapid precipitation, in agreement with infrared spectroscopy assessments of local structural order. These results provide the first detailed reference database of SEM-CL and LIF spectra of CaCO3 standards, and find application in the characterization of optical, archaeological and construction materials.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 406 ◽  
Author(s):  
Yuwei Zuo ◽  
Wenzhong Yang ◽  
Kegui Zhang ◽  
Yun Chen ◽  
Xiaoshuang Yin ◽  
...  

Poly acrylic acid (PAA) and polyepoxysuccinic acid (PESA) were investigated as scale inhibitors. The static experiments certified that PAA was superior to PESA for the inhibition of calcium carbonate in the low molecular weight range. The X-ray diffraction patterns suggest that the effect of PAA on the calcite (1 0 4) and (1 1 0) crystal plane was more obvious. Scanning electron microscopy was used to study the surface morphology of the depositions, which indicated that the addition of scale inhibitors could disturb the normal growth of CaCO3 scale. The transmittance ratio of ferric oxide demonstrated that PAA had a better dispersion performance than PESA. The molecular dynamics simulation and quantum calculation were selected to theoretically explore the mechanism and structure of scale inhibitors, indicating that the interaction of PAA with (1 0 4) and (1 1 0) calcite crystal surfaces was stronger than PESA. In addition, the results indicated that the PAA with negative charge more easily adsorbed free Ca2+ in the aqueous phase. Based on these observations, PAA exhibited better scale inhibition and dispersion effects than PESA in the case of low molecular weight.


CrystEngComm ◽  
2014 ◽  
Vol 16 (44) ◽  
pp. 10262-10272 ◽  
Author(s):  
A. Ostasz ◽  
R. Łyszczek ◽  
L. Mazur ◽  
B. Tarasiuk

Novelp-xylylene-bis(thioacetic) acid (p-XBTA) and its co-crystals with 2-amino-4,6-dimethylpyrimidine (DMP) have been synthesized and characterized by single-crystal X-ray diffraction, infrared spectroscopy and thermal analysis methods (TG/DSC).


Sign in / Sign up

Export Citation Format

Share Document