scholarly journals Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Larissa Daniele Bobermin ◽  
André Quincozes-Santos ◽  
Camila Leite Santos ◽  
Ana Paula M. Varela ◽  
Thais F. Teixeira ◽  
...  

AbstractZika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3651
Author(s):  
Aaron Hilliard ◽  
Patricia Mendonca ◽  
Tanya D. Russell ◽  
Karam F. A. Soliman

Cataracts account for over half of global blindness. Cataracts formations occur mainly due to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2 pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects. Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on discussing Nrf2’s role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity, and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis inhibition as potential molecular targets in preventing cataracts.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


2019 ◽  
Vol 20 (19) ◽  
pp. 4862 ◽  
Author(s):  
Min-Ju Kim ◽  
Hana Park ◽  
Seo-Hyeon Choi ◽  
Min-Jeong Kong ◽  
Ji-Eun Kim ◽  
...  

2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid that has anti-inflammatory, antioxidant, and neuroprotective activities. In the present study, we evaluate the effects of CDDO-Me on serum extravasation and astroglial death in the rat piriform cortex (PC) induced by status epilepticus (a prolonged seizure activity, SE) in order to propose an underlying pharmacological mechanism of CDDO-Me and its availability for treatment of vasogenic edema. CDDO-Me effectively mitigated serum extravasation and a massive astroglial loss in the PC following SE. CDDO-Me abrogated tumor necrosis factor-α (TNF-α) synthesis in activated microglia by inhibiting nuclear factor-κB (NF-κB) p65 serine 276 phosphorylation. CDDO-Me also abolished NF-κB threonine 435 phosphorylation in endothelial cells and TNF-α-mediated-phosphatidylinositol-3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling cascades, which trigger vasogenic edema following SE. Furthermore, CDDO-Me increased astroglial viability via the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression. Therefore, our findings suggest that CDDO-Me may ameliorate SE-induced vasogenic edema formation by regulating NF-κB p65 phosphorylations in microglia as well as endothelial cells and enhancing Nrf2 expression in astrocytes, respectively.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Vivian V. Costa ◽  
Juliana L. Del Sarto ◽  
Rebeca F. Rocha ◽  
Flavia R. Silva ◽  
Juliana G. Doria ◽  
...  

ABSTRACT Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo. These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo. These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment.


2007 ◽  
Vol 35 (5) ◽  
pp. 1364-1368 ◽  
Author(s):  
B. Rigas

NO (nitric oxide) biology has provided the impetus for the development of anticancer agents based on their ability to release NO. NO-NSAIDs (NO-donating non-steroidal anti-inflammatory drugs), consisting of a conventional NSAID to which an NO-releasing moiety is covalently attached, are promising chemopreventive agents against cancer. Compared with their parent compounds, NO-NSAIDs are up to several hundred times more potent in inhibiting the growth of cancer cell lines and prevent colon and pancreatic cancer in animal models. Their chemopreventive effect is due to inhibition of proliferation, induction of cell death and inhibition of cell-cycle-phase transitions. NO-ASA (NO-aspirin), the best-studied NO-NSAID, induces oxidative stress in target cells. Major downstream signalling effects involve the Wnt, NOS2 (nitric oxide synthase 2), MAPK (mitogen-activated protein kinase), NF-κB (nuclear factor κB) and Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) pathways. NO-NSAIDs, particularly NO-ASA, appear to be safe compounds, as suggested by many animal and early human studies. An ongoing clinical trial is designed to determine whether NO-ASA can inhibit early stages of colon carcinogenesis in subjects at risk for colon cancer. It is clinical trials that will ultimately determine the role of NO-NSAIDs in cancer prevention and perhaps treatment.


Author(s):  
Luis A. Videla ◽  
Virginia Fernández ◽  
Pamela Cornejo ◽  
Romina Vargas ◽  
Iván Castillo

Thyroid hormone (TH) exerts important actions on cellular energy metabolism, accelerating O2consumption with consequent reactive oxygen species (ROS) generation and redox signalling affording cell protection, a response that is contributed by redox-independent mechanisms. These processes underlie genomic and non-genomic pathways, which are integrated and exhibit hierarchical organisation. ROS production led to the activation of the redox-sensitive transcription factors nuclear factor-κB, signal transducer and activator of transcription 3, activating protein 1 and nuclear factor erythroid 2-related factor 2, promoting cell protection and survival by TH. These features involve enhancement in the homeostatic potential including antioxidant, antiapoptotic, antiinflammatory and cell proliferation responses, besides higher detoxification capabilities and energy supply through AMP-activated protein kinase upregulation. The above aspects constitute the molecular basis for TH-induced preconditioning of the liver that exerts protection against ischemia-reperfusion injury, a strategy also observed in extrahepatic organs of experimental animals and with other types of injury, which awaits application in the clinical setting. Noteworthy, re-adjusting TH to normal levels results in several beneficial effects; for example, it lengthens the cold storage time of organs for transplantation from brain-dead donors; allows a superior neurological outcome in infants of <28 weeks of gestation; reduces the cognitive side-effects of lithium and improves electroconvulsive therapy in patients with bipolar disorders.


Sign in / Sign up

Export Citation Format

Share Document