scholarly journals Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chung Phuong Le ◽  
Hai Thi Nguyen ◽  
Toi Duy Nguyen ◽  
Quyen Huynh Minh Nguyen ◽  
Hai The Pham ◽  
...  

AbstractNitrification is the rate limiting step in the nitrogen removal processes since nitrifiers have high oxygen demand, but poorly compete with aerobic heterotrophs. In a laboratory-scaled system, we investigated a process of ammonium oxidation under ferric-iron reducing condition (feammox) in the presence of organic carbon using influents with high NH4+ and COD contents, and ferrihydrite as the only electron acceptor. Batch incubations testing influents with different NH4+ and COD concentrations revealed that the [COD]/[NH4+] ratio of 1.4 and the influent redox potential ranging from − 20 to + 20 mV led to the highest removal efficiencies, i.e. 98.3% for NH4+ and 58.8% for COD. N2 was detected as the only product of NH4+ conversion, whereas NO2− and NO3− were not detected. While operating continuously with influent having a [COD]/[NH4+] ratio of 1.4, the system efficiently removed NH4+ (> 91%) and COD (> 54%) within 6 day retention time. Fluorescence in situ hybridization analyses using Cy3-labeled 16S rRNA oligonucleotide probes revealed that gamma-proteobacteria dominated in the microbial community attaching to the matrix bed of the system. The iron-reduction dependent NH4+ and COD co-removal with a thorough conversion of NH4+ to N2 demonstrated in this study would be a novel approach for nitrogen treatment.

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


1999 ◽  
Vol 39 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Joana Azeredo ◽  
Valentina Lazarova ◽  
Rosário Oliveira

To study the composition of a biofilm a previous extraction method is required to separate cells from the matrix. There are several methods reported in the literature; however they are not efficient or promote leakage of intracellular material. In this work several extraction methods were assayed in mixed culture and pure culture biofilms and their efficiency was evaluated by the amount of organic carbon, proteins and intracellular material extracted. The results showed that the extraction with glutaraldehyde 3% (w/v) was the most suitable method, extracting great amounts of organic carbon without promoting cell lysis or permeabilization. Glutaraldehyde is a bifunctional reagent that binds to cell walls avoiding their permeabilization and the biofilm matrix is solubilized in the solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Jalilzadeh ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Aliakbar Azimi ◽  
Simin Nasseri ◽  
...  

A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.


2003 ◽  
Vol 47 (12) ◽  
pp. 293-300 ◽  
Author(s):  
J. Veenstra ◽  
S. Nolen ◽  
J. Carroll ◽  
C. Ruiz

A 3-year study was conducted by the U.S. Army Corps of Engineers assessing water quality related impacts of aquaculture of 250,000 channel catfish (Ictalurus punctatus) in floating net pens in the Rock Creek Arm of Lake Texoma, Oklahoma/Texas. Five large nylon nets suspended from a floating framework of galvanized metal anchored in open water 100 m offshore made up the net pens with fish stocking densities varying from 88 to 219 fish/m3. Water quality sampling was conducted biweekly from April to September and monthly from October to March at three locations. On all sampling dates field measurements of water temperature, pH, dissolved oxygen, and conductivity were recorded at 1 m depth intervals and water samples were collected at a depth of 0.5 m and near the bottom of the water column at each site. Sample analyses included: total alkalinity, total hardness, turbidity, chloride, sulfate, orthophosphate, total phosphorus, nitrate-N, nitrite-N, total Kjeldahl nitrogen, total organic carbon, dissolved organic carbon, biochemical oxygen demand, and chlorophyll a. The results showed statistically significant decreases in water temperature and dissolved oxygen and significant increases in field conductivity in surface waters near the net pens relative to other sampling sites. The most dramatic water quality effect observed during the study was decrease in dissolved oxygen levels near the net pens following lake turnover in the second year.


Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Pavla Řezníčková ◽  
Tomáš Soldán ◽  
Petr Pařil ◽  
Světlana Zahrádková

AbstractThe recurrent drying out of small streams in past decades has shown an urgent need to pay attention to the impact of global climate change. The objectives of this study were to describe the effect of drying out on the composition of the mayfly taxocene and evaluate the relevance of individual species traits for survival of mayflies to drying out. The mayfly taxocenes of two model localities, one at an intermittent and one at a permanent brook, were investigated in 2002, 2003 and 2005. Compared with the permanent stream, the taxocene of the intermittent stream was short of nine species, foremost rheobionts and high oxygen demand species. To explain further differences between both stream types in survival and recolonisation ability, 15 species traits were evaluated. These included so-called “ecological traits” (e.g., habitat and substrate range, density, distribution, current velocity adaptation) and “biological traits” connected with life cycle and larval/adult adaptations. Species showing the highest number of advantageous traits (with only exception of Electrogena sp. cf. ujhelyii — species of taxonomically unclear status) were able to successfully survive under the unfavourable conditions of the intermittent brook. Biological traits considered more important in many respects seem to be good predictors for assessing sensitivity to extreme temperature changes, hydrological regime fluctuations and the survival/recolonisation ability of species in exposed habitats.


Author(s):  
Jakub Drewnowski ◽  
Jacek Makinia ◽  
Lukasz Kopec ◽  
Francisco-Jesus Fernandez-Morales

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.


2012 ◽  
Vol 18 (6) ◽  
pp. 1866-1879 ◽  
Author(s):  
Michael B. Ashcroft ◽  
John R. Gollan ◽  
David I. Warton ◽  
Daniel Ramp

2004 ◽  
Vol 49 (5-6) ◽  
pp. 281-288 ◽  
Author(s):  
S.J. Kim ◽  
P.Y. Yang

A two-stage entrapped mixed microbial cell (2SEMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80 % of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99 %. The effluent TSS of less than 25 mg/L in the 2SEMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6 %) and nitrogen (average 80.5 %) in the 2SEMMC process with 3 times of recirculation ratio.


2016 ◽  
Vol 62 (4) ◽  
pp. 27-31
Author(s):  
Bui Manh Ha ◽  
Duong Thi Giang Huong ◽  
Luong Thi Hong Xuyen

Abstract Traditional markets play a major role in socio-economics and constitutes a significant aspect of Vietnamese culture. However, wastewater streams discharged from the markets are generally characterized by a lot of inorganic nutrients and organic substances originated from fresh food processing units. They could lead to serious water contamination if discharged without proper treatment. This study applied microalgae Chlorella sp. for eliminating inorganic nutrients (NO3−-N, NH4+-N and PO43−-P) and organic carbon (Chemical oxygen demand-COD) from wastewater of the Binh Dien market. The removal efficiencies reached for NH4+-N > 86%, for NO3−-N > 72%, and for PO43−-P > 69%, respectively, at algal density of 49 × 104 cell mL−1, and for COD > 96% at algal density of 35 × 104 cell mL−1 after five cultivating days. The effluence satisfied the Vietnamese standard, column B, of the National technical regulation on industrial wastewater (QCVN 40:2011/BTNMT). The results demonstrated that the culture system composed of green algal Chlorella sp. could be a potential candidate for the removal of nutrients and organic carbon by a wastewater treatment process from the Binh Dien market.


Sign in / Sign up

Export Citation Format

Share Document