scholarly journals A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix

2012 ◽  
Vol 18 (6) ◽  
pp. 1866-1879 ◽  
Author(s):  
Michael B. Ashcroft ◽  
John R. Gollan ◽  
David I. Warton ◽  
Daniel Ramp
2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


2021 ◽  
Vol 5 (10) ◽  
pp. 275
Author(s):  
Nico Katuin ◽  
Daniël M. J. Peeters ◽  
Clemens A. Dransfeld

The outstanding properties of carbon fibre-reinforced polymer composites are affected by the development of its microstructure during processing. This work presents a novel approach to identify microstructural features both along the tape thickness and through the thickness. Voronoi tessellation-based evaluation of the fibre volume content on cross-sectional micrographs, with consideration of the matrix boundary, is performed. The method is shown to be robust and is suitable to be automated. It has the potential to discriminate specific microstructural features and to relate them to processing behaviour removing the need for manufacturing trials.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Wantinee Viratyaporn ◽  
Nancy Twu ◽  
Richard Lehman

ABSTRACTA novel approach has been explored for the efficient dispersion and uniaxial alignment of fibers in dual phase polymer matrices based on the streaming flow that occurs when two immiscible polymer blends are melt processed under high shear conditions. Such conditions improve the alignment and distribution of fibers in the matrix, a feature of particular importance when fine nanofibers are used. This self-alignment mechanism seeks to produce optimum properties from relatively small volume fractions of fiber. Recent efforts have focused on a model system containing micron-size glass fibers in immiscible polymer blends. This paper presents selected mechanical properties measured for the model system and the flow/orientation paradigm that produces the observed morphologies.


2015 ◽  
Vol 68 (2) ◽  
pp. 335 ◽  
Author(s):  
Linden Servinis ◽  
Thomas R. Gengenbach ◽  
Mickey G. Huson ◽  
Luke C. Henderson ◽  
Bronwyn L. Fox

We demonstrate the utilisation of an azomethine 1,3-dipolar cycloaddition reaction with carbon fibre to graft complex molecules onto the fibre surface. In an effort to enhance the interfacial interaction of the fibre to the matrix, the functionalised fibres possessed a pendant amine that is able to interact with epoxy resins. Functionalisation was supported by X-ray photoelectron spectroscopy and the grafting process had no detrimental effects on tensile strength compared with the control (untreated) fibres. Also, microscopic roughness (as determined by atomic force microscopy) and fibre topography were unchanged after the described treatment process. This methodology complements existing methodology aimed at enhancing the surface of carbon fibres for advanced material applications while not compromising the desirable strength profile. Single-fibre fragmentation tests show a statistically significant decrease in fragment length compared with the control fibres in addition to transverse cracking within the curing resin, both of which indicate an enhanced interaction between fibre and resin.


2015 ◽  
Vol 54 ◽  
pp. 593-629 ◽  
Author(s):  
Ben Strasser ◽  
Adi Botea ◽  
Daniel Harabor

We introduce a novel approach to Compressed Path Databases, space efficient oracles used to very quickly identify the first edge on a shortest path. Our algorithm achieves query running times on the 100 nanosecond scale, being significantly faster than state-of-the-art first-move oracles from the literature. Space consumption is competitive, due to a compression approach that rearranges rows and columns in a first-move matrix and then performs run length encoding (RLE) on the contents of the matrix. One variant of our implemented system was, by a convincing margin, the fastest entry in the 2014 Grid-Based Path Planning Competition. We give a first tractability analysis for the compression scheme used by our algorithm. We study the complexity of computing a database of minimum size for general directed and undirected graphs. We find that in both cases the problem is NP-complete. We also show that, for graphs which can be decomposed along articulation points, the problem can be decomposed into independent parts, with a corresponding reduction in its level of difficulty. In particular, this leads to simple and tractable algorithms with linear running time which yield optimal compression results for trees.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6392
Author(s):  
Yin-Ku Lin ◽  
Shih-Chun Yang ◽  
Ching-Yun Hsu ◽  
Jui-Tai Sung ◽  
Jia-You Fang

Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.


2003 ◽  
Vol 766 ◽  
Author(s):  
B. Lahlouh ◽  
T. Rajagopalan ◽  
J. A. Lubguban ◽  
N. Biswas ◽  
S. Gangopadhyaya ◽  
...  

AbstractThis work presents a novel approach using supercritical carbon dioxide (SCCO2) to selectively extract poly(propylene glycol) (PPG) porogen from a poly(methylsilsesquioxane) (PMSSQ) matrix, which results in the formation of nanopores. Nanoporous thin films were prepared by spin-casting a solution containing appropriate quantities of PPG porogen and PMSSQ dissolved in PM acetate. The as-spun films were thermally cured at temperatures well below the thermal degradation temperature of the organic polymer to form a cross-linked organic/inorganic polymer hybrid. By selectively removing the CO2 soluble PPG porogen, open and closed pore structures are possible depending upon the porogen load and its distribution in the matrix before extraction. In the present work, two different loadings of PPG namely 25 wt.% and 55 wt.% were used. Both static SCCO2 and pulsed SCCO2/cosolvent treatments were used for PPG extraction. The initial results indicate that the pulsed SCCO2/cosolovent treatment was more efficient. Fourier transform infrared spectroscopy (FTIR) and refractive index measurements further corroborate the successful extraction of the porogens at relatively low temperatures (2000C). For the pure PMSSQ film, the k value is 3.1, whereas it is 1.46 and 2.27 for the open and closed pore compositions respectively after the static SCCO2 extraction and 430°C subsequent annealing. The reduction in the k-value is attributed to the formation of nanopores. The pore structure was verified from transmission electron microscopy (TEM), and from small-angle x-ray scattering (SAXS) measurements, the pore size was determined to be 1-3 nm for these films.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chung Phuong Le ◽  
Hai Thi Nguyen ◽  
Toi Duy Nguyen ◽  
Quyen Huynh Minh Nguyen ◽  
Hai The Pham ◽  
...  

AbstractNitrification is the rate limiting step in the nitrogen removal processes since nitrifiers have high oxygen demand, but poorly compete with aerobic heterotrophs. In a laboratory-scaled system, we investigated a process of ammonium oxidation under ferric-iron reducing condition (feammox) in the presence of organic carbon using influents with high NH4+ and COD contents, and ferrihydrite as the only electron acceptor. Batch incubations testing influents with different NH4+ and COD concentrations revealed that the [COD]/[NH4+] ratio of 1.4 and the influent redox potential ranging from − 20 to + 20 mV led to the highest removal efficiencies, i.e. 98.3% for NH4+ and 58.8% for COD. N2 was detected as the only product of NH4+ conversion, whereas NO2− and NO3− were not detected. While operating continuously with influent having a [COD]/[NH4+] ratio of 1.4, the system efficiently removed NH4+ (> 91%) and COD (> 54%) within 6 day retention time. Fluorescence in situ hybridization analyses using Cy3-labeled 16S rRNA oligonucleotide probes revealed that gamma-proteobacteria dominated in the microbial community attaching to the matrix bed of the system. The iron-reduction dependent NH4+ and COD co-removal with a thorough conversion of NH4+ to N2 demonstrated in this study would be a novel approach for nitrogen treatment.


2020 ◽  
Vol 8 (5) ◽  
pp. 4763-4769

Now days as the progress of digital image technology, video files raise fast, there is a great demand for automatic video semantic study in many scenes, such as video semantic understanding, content-based analysis, video retrieval. Shot boundary detection is an elementary step for video analysis. However, recent methods are time consuming and perform badly in the gradual transition detection. In this paper we have projected a novel approach for video shot boundary detection using CNN which is based on feature extraction. We designed couple of steps to implement this method for automatic video shot boundary detection (VSBD). Primarily features are extracted using H, V&S parameters based on mean log difference along with implementation of histogram distribution function. This feature is given as an input to CNN algorithm which detects shots which is based on probability function. CNN is implemented using convolution and rectifier linear unit activation matrix which is followed after filter application and zero padding. After downsizing the matrix it is given as a input to fully connected layer which indicates shot boundaries comparing the proposed method with CNN method based on GPU the results are encouraging with substantially high values of precision Recall & F1 measures. CNN methods perform moderately better for animated videos while it excels for complex video which is observed in the results.


Author(s):  
Bindia Sahu ◽  
M. Sathish ◽  
G. C. Jayakumar

Fatliquoring is an important step of post tanning process of leathermanufacturing where incorporation of self-emulsified oil (lubricant)makes the leather soft. There are several methods which introducepolarity into oil and provide the path where reactive species ofmodified oil can interact with water which leads to form a fatliquor.The aim of this work is to introduce an extra polarity into the fattyacid moiety through chemical modification of castor oil by carbeneintermediate. The spectroscopic characterisation such as FTIR,1H-NMR and 13C-NMR of fatliquor have been carried out. Particle size analysis of fatliquor has also been done. The experimental leathers have been tested for physical strength characterisation such as tensile and tear strength verses control and found to have better properties than control. SEM analysis for morphological study of experimental leather were also carried out which clearly indicates the uniform dispersion of fiber bundles due to the fine distribution of the novel and self-emulsifying fatliquor throughout the matrix.


Sign in / Sign up

Export Citation Format

Share Document