scholarly journals The serine protease HtrA plays a key role in heat-induced dispersal of pneumococcal biofilms

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yashuan Chao ◽  
Caroline Bergenfelz ◽  
Renhua Sun ◽  
Xiao Han ◽  
Adnane Achour ◽  
...  

AbstractStreptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx by forming multicellular biofilms. Due to the high level of asymptomatic carriage, transition to infections, such as otitis media, pneumonia, sepsis, and meningitis, occurs often enough that the pneumococcus remains a major cause of disease and death globally. Virus infection and virus-induced responses, such as increased temperature (fever), trigger release of virulent bacteria from colonizing biofilms. The exact mechanisms involved in pneumococcal egress during biofilm dispersal remain unknown, although we hypothesize that disruption of the biofilm matrix encasing the bacteria is necessary. Here, we utilized established in vitro biofilm dispersal models to investigate the involvement of proteases in bacterial egress from pneumococcal biofilms. We demonstrate the importance of protease activity, both through increased bacterial release following addition of proteases and reduced heat-induced biofilm dispersal in the presence of protease inhibitors. We identify a key role for the surface-exposed serine protease HtrA, but not PrtA, in heat-induced biofilm dispersal. Bacterial release from htrA-negative biofilms was significantly reduced compared to wild-type isogenic strains but was restored and increased above wild-type levels following addition of recombinant HtrA. Understanding the specific mechanisms involved in bacterial egress may provide novel targets for future strategies aimed to specifically interfere with disease progression without disturbing nasopharyngeal biofilm colonization.

2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2009 ◽  
Vol 54 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Hassan Safi ◽  
Robert D. Fleischmann ◽  
Scott N. Peterson ◽  
Marcus B. Jones ◽  
Behnam Jarrahi ◽  
...  

ABSTRACT Mutations within codon 306 of the Mycobacterium tuberculosis embB gene modestly increase ethambutol (EMB) MICs. To identify other causes of EMB resistance and to identify causes of high-level resistance, we generated EMB-resistant M. tuberculosis isolates in vitro and performed allelic exchange studies of embB codon 406 (embB406) and embB497 mutations. In vitro selection produced mutations already identified clinically in embB306, embB397, embB497, embB1024, and embC13, which result in EMB MICs of 8 or 14 μg/ml, 5 μg/ml, 12 μg/ml, 3 μg/ml, and 4 μg/ml, respectively, and mutations at embB320, embB324, and embB445, which have not been identified in clinical M. tuberculosis isolates and which result in EMB MICs of 8 μg/ml, 8 μg/ml, and 2 to 8 μg/ml, respectively. To definitively identify the effect of the common clinical embB497 and embB406 mutations on EMB susceptibility, we created a series of isogenic mutants, exchanging the wild-type embB497 CAG codon in EMB-susceptible M. tuberculosis strain 210 for the embB497 CGG codon and the wild-type embB406 GGC codon for either the embB406 GCC, embB406 TGC, embB406 TCC, or embB406 GAC codon. These new mutants showed 6-fold and 3- to 3.5-fold increases in the EMB MICs, respectively. In contrast to the embB306 mutants, the isogenic embB497 and embB406 mutants did not have preferential growth in the presence of isoniazid or rifampin (rifampicin) at their MICs. These results demonstrate that individual embCAB mutations confer low to moderate increases in EMB MICs. Discrepancies between the EMB MICs of laboratory mutants and clinical M. tuberculosis strains with identical mutations suggest that clinical EMB resistance is multigenic and that high-level EMB resistance requires mutations in currently unknown loci.


2020 ◽  
Author(s):  
Wenzhu Dong ◽  
Jin Shi ◽  
Ping Chu ◽  
Rongmei Liu ◽  
Shu’an Wen ◽  
...  

Abstract ObjectivesThe impressive potency of metronidazole (MTZ) against anaerobic bacteria indicates the potential for killing anaerobic Mtb. However, how MTZ is activated in Mtb still remains unknown. We aimed to characterize the endogenous nitroreductase responsible for MTZ activation in anaerobic Mtb.MethodsThe minimal inhibitory concentrations (MICs) of Mtb isolates against MTZ were determined by microplate Alamar Blue assay. Intracellular anti-TB activities of MTZ and pyrazinamide (PZA) were tested in THP-1 cells infected by Mycobacterium tuberculosis (Mtb) H37Rv with a multiplicity of infection (MOI) of 10. The nitroreductase activity of purified wild-type Rv3131 and mutants were measured under anaerobic conditions generated by glucose oxidase/catalase system. Two-tailed unpaired Student’s t test was used to compare the difference between various groups.Results180 Mtb isolates (81.8%, 180/220) had MIC values higher than 16 μg/mL, and 40 had MIC values of 16 μg/mL, demonstrating high-level resistance to MTZ under aerobic condition. The number of viable bacteria in macrophages treated with MTZ was dramatically decreased by 71.3% after 5-day MTZ treatment, indicating significant inhibition of MTZ against anaerobic Mtb. In vitro biochemical analysis demonstrated that Rv3131 exhibited the NADPH oxidase activity under anaerobic condition. The substitutions of Cys75Ser and Cys279Ser could maintain 41.7% and 71.1% of enzyme activity compared to wild-type protein, respectively.ConclusionsOur data demonstrate that MTZ has more potent efficacy against intracellular Mtb than PZA. Rv3131 is identified as a nitroreductase enzyme in the activation of MTZ, and Cys75 of Rv3131 is the major active residue for nitroreductase activity.


1998 ◽  
Vol 42 (12) ◽  
pp. 3234-3241 ◽  
Author(s):  
Chun Y. Tai ◽  
Paul A. Escarpe ◽  
Robert W. Sidwell ◽  
Matthew A. Williams ◽  
Willard Lew ◽  
...  

ABSTRACT An oral prodrug of GS 4071, a potent and selective inhibitor of influenza neuraminidases, is currently under clinical development for the treatment and prophylaxis of influenza virus infections in humans. To investigate the potential development of resistance during the clinical use of this compound, variants of the human influenza A/Victoria/3/75 (H3N2) virus with reduced susceptibility to the neuraminidase inhibitor GS 4071 were selected in vitro by passaging the virus in MDCK cells in the presence of inhibitor. After eight passages, variants containing two amino acid substitutions in the hemagglutinin (A28T in HA1 and R124M in HA2) but no changes in the neuraminidase were isolated. These variants exhibited a 10-fold reduction in susceptibility to GS 4071 and zanamivir (GG167) in an in vitro plaque reduction assay. After 12 passages, a second variant containing these hemagglutinin mutations and a Lys substitution for the conserved Arg292 of the neuraminidase was isolated. The mutant neuraminidase enzyme exhibited high-level (30,000-fold) resistance to GS 4071, but only moderate (30-fold) resistance to zanamivir and 4-amino-Neu5Ac2en, the amino analog of zanamivir. The mutant enzyme had weaker affinity for the fluorogenic substrate 2′-(4-methylumbelliferyl)-α-d- N -acetylneuraminic acid and lower enzymatic activity compared to the wild-type enzyme. The viral variant containing the mutant neuraminidase did not replicate as well as the wild-type virus in culture and was 10,000-fold less infectious than the wild-type virus in a mouse model. These results suggest that although the R292K neuraminidase mutation confers high-level resistance to GS 4071 in vitro, its effect on viral virulence is likely to render this mutation of limited clinical significance.


2005 ◽  
Vol 25 (9) ◽  
pp. 3461-3474 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Fan Zhang ◽  
Gwo Jiunn Hwang ◽  
Mark J. Swanson ◽  
...  

ABSTRACT Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1176-1183 ◽  
Author(s):  
Najib El Haddad ◽  
Dean Heathcote ◽  
Robert Moore ◽  
Sunmi Yang ◽  
Jamil Azzi ◽  
...  

Abstract Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.


2014 ◽  
Vol 83 (3) ◽  
pp. 950-957 ◽  
Author(s):  
Christine Cho ◽  
Aroon Chande ◽  
Lokesh Gakhar ◽  
Lauren O. Bakaletz ◽  
Joseph A. Jurcisek ◽  
...  

NontypeableHaemophilus influenzae(NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease ofStaphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P< 0.042). Microscopic analysis of biofilms grownin vitroshowed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal.


2001 ◽  
Vol 75 (23) ◽  
pp. 11284-11291 ◽  
Author(s):  
David A. Einfeld ◽  
Rosanna Schroeder ◽  
Peter W. Roelvink ◽  
Alena Lizonova ◽  
C. Richter King ◽  
...  

ABSTRACT The development of tissue-selective virus-based vectors requires a better understanding of the role of receptors in gene transfer in vivo, both to rid the vectors of their native tropism and to introduce new specificity. CAR and αv integrins have been identified as the primary cell surface components that interact with adenovirus type 5 (Ad5)-based vectors during in vitro transduction. We have constructed a set of four vectors, which individually retain the wild-type cell interactions, lack CAR binding, lack αv integrin binding, or lack both CAR and αv integrin binding. These vectors have been used to examine the roles of CAR and αv integrin in determining the tropism of Ad vectors in a mouse model following intrajugular or intramuscular injection. CAR was found to play a significant role in liver transduction. The absence of CAR binding alone, however, had little effect on the low level of expression from Ad in other tissues. Binding of αv integrins appeared to have more influence than did binding of CAR in promoting the expression in these tissues and was also found to be important in liver transduction by Ad vectors. An effect of the penton base modification was a reduction in the number of vector genomes that could be detected in several tissues. In the liver, where CAR binding is important, combining defects in CAR and αv integrin binding was essential to effectively reduce the high level of expression from Ad vectors. While there may be differences in Ad vector tropism among species, our results indicate that both CAR and αv integrins can impact vector distribution in vivo. Disruption of both CAR and αv integrin interactions may be critical for effectively reducing native tropism and enhancing the efficacy of specific targeting ligands in redirecting Ad vectors to target tissues.


1996 ◽  
Vol 40 (1) ◽  
pp. 55-60 ◽  
Author(s):  
D P Nicolau ◽  
M N Marangos ◽  
C H Nightingale ◽  
K B Patel ◽  
B W Cooper ◽  
...  

The efficacy of vancomycin (VM) and teicoplanin (TE), alone and in combination with streptomycin (SM), against enterococci that express low-level VanB-type VM resistance was investigated in experimental endocarditis using isogenic strains of Enterococcus faecalis susceptible to glycopeptides and aminoglycosides or inducibly resistant to low levels of VM (MIC = 16 micrograms/ml). VM was significantly less active against the resistant strain than against the susceptible strain, establishing that low-level VanB-type VM resistance can influence therapeutic efficacy. By contrast, TE had equally good activity against both strains. VM or TE combined with SM was synergistic and bactericidal against the resistant strain in vitro. While both combinations were efficient in reducing bacterial density in vivo, TE plus SM was significantly superior to VM plus SM if valve sterilization was considered. These data suggest that despite the presence of low-level VanB-type resistance, combination therapy with a glycopeptide and SM (and presumably other aminoglycosides to which there is not high-level resistance) will nevertheless provide effective bactericidal activity.


2004 ◽  
Vol 48 (6) ◽  
pp. 2260-2266 ◽  
Author(s):  
Liangjun Lu ◽  
Tami J. Pilot-Matias ◽  
Kent D. Stewart ◽  
John T. Randolph ◽  
Ron Pithawalla ◽  
...  

ABSTRACT BILN 2061 is a novel, specific hepatitis C virus (HCV) NS3 serine protease inhibitor discovered by Boehringer Ingelheim that has shown potent activity against HCV replicons in tissue culture and is currently under clinical investigation for the treatment of HCV infection. The poor fidelity of the HCV RNA-dependent RNA polymerase will likely lead to the development of drug-resistant viruses in treated patients. The development of resistance to BILN 2061 was studied by the in vitro passage of HCV genotype 1b replicon cells in the presence of a fixed concentration of the drug. Three weeks posttreatment, four colonies were expanded for genotypic and phenotypic characterization. The 50% inhibitory concentrations of BILN 2061 for these colonies were 72- to 1,228-fold higher than that for the wild-type replicon. Sequencing of the individual colonies identified several mutations in the NS3 serine protease gene. Molecular clones containing the single amino acid substitution A156T, R155Q, or D168V resulted in 357-fold, 24-fold, and 144-fold reductions in susceptibility to BILN 2061, respectively, compared to the level of susceptibility shown by the wild-type replicon. Modeling studies indicate that all three of these residues are located in close proximity to the inhibitor binding site. These findings, in addition to the three-dimensional structure analysis of the NS3/NS4A serine protease inhibitor complex, provide a strategic guide for the development of next-generation inhibitors of HCV NS3/NS4A serine protease.


Sign in / Sign up

Export Citation Format

Share Document