scholarly journals Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kailu Xiao ◽  
Xianqian Wu ◽  
Xuan Song ◽  
Jianhua Yuan ◽  
Wenyu Bai ◽  
...  

AbstractIt has been a key issue for photovoltaic (PV) cells to survive under mechanical impacts by tiny dust. In this paper, the performance degradation and the damage behavior of PV cells subjected to massive dust impact are investigated using laser-shock driven particle impact experiments and mechanical modeling. The results show that the light-electricity conversion efficiency of the PV cells decreases with increasing the impact velocity and the particles’ number density. It drops from 26.7 to 3.9% with increasing the impact velocity from 40 to 185 m/s and the particles’ number densities from 35 to 150/mm2, showing a reduction up to 85.7% when being compared with the intact ones with the light-electricity conversion efficiency of 27.2%. A damage-induced conversion efficiency degradation (DCED) model is developed and validated by experiments, providing an effective method in predicting the performance degradation of PV cells under various dust impact conditions. Moreover, three damage modes, including damaged conducting grid lines, fractured PV cell surfaces, and the bending effects after impact are observed, and the corresponding strength of each mode is quantified by different mechanical theories.

2005 ◽  
Vol 297-300 ◽  
pp. 1321-1326 ◽  
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin

The damage behaviors induced in a SiC by a spherical particle impact having a different material and size were investigated. Especially, the influence of the impact velocity of a particle on the cone crack shape developed was mainly discussed. The damage induced by a particle impact was different depending on the material and the size of a particle. The ring cracks on the surface of the specimen were multiplied by increasing the impact velocity of a particle. The steel particle impact produced the larger ring cracks than that of the SiC particle. In the case of the high velocity impact of the SiC particle, the radial cracks were generated due to the inelastic deformation at the impact site. In the case of the larger particle impact, the morphology of the damages developed were similar to the case of the smaller particle one, but a percussion cone was formed from the back surface of the specimen when the impact velocity exceeded a critical value. The zenithal angle of the cone cracks developed into the SiC decreased monotonically as the particle impact velocity increased. The size and material of a particle influenced more or less on the extent of the cone crack shape. An empirical equation was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of the cone crack. This equation will be helpful to the computational simulation of the residual strength in ceramic components damaged by the particle impact.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ai Du ◽  
Yi Ma ◽  
Mingfang Liu ◽  
Zhihua Zhang ◽  
Guangwei Cao ◽  
...  

Abstract As an attractive collector medium for hypervelocity particles, combined with outstanding physical properties and suitable compositional characteristics, SiO2 aerogel has been deployed on outer space missions and laser shock-loaded collection experiments. In this paper, impact experiments were conducted to understand the penetration process of irregular grains, irregular Al2O3 grains with two different sizes and speeds (~110 μm@7 km/s, ~251 μ[email protected] km/s) at various density silica aerogels. By classifying the shapes of projectile residues and tracks, the morphology of tracks was analyzed. It was observed that there were several kinds of typical tracks in the penetration of irregular grains, accompanied by residues with the shapes of near-sphere, polyhedron, streamlined body wedge, and rotator. The rotational behavior was demonstrated by the final status of one flake projectile as direct evidence. In addition, there was no obvious relationship between the track length and experimental parameters, which may be caused by the uncertain interaction between aerogels and irregular particles. In addition, it confirmed the existence of fragmentation, melting situation by observing the shape of the impact entrance hole. At the same time, optical coherence tomography was used to observe the detail of tracks clearly, which provided a method to characterize the tracks nondestructively.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Baran Yildirim ◽  
Hirotaka Fukanuma ◽  
Teiichi Ando ◽  
Andrew Gouldstone ◽  
Sinan Müftü

Specific mechanisms underlying the critical velocity in cold gas particle spray applications are still being discussed, mainly due to limited access to in situ experimental observation and the complexity of modeling the particle impact process. In this work, particle bonding in the cold spray (CS) process was investigated by the finite element (FE) method. An effective interfacial cohesive strength parameter was defined in the particle–substrate contact regions. Impact of four different metals was simulated, using a range of impact velocities and varying the effective cohesive strength values. Deformation patterns of the particle and the substrate were characterized. It was shown that the use of interfacial cohesive strength leads to a critical particle impact velocity that demarcates a boundary between rebounding and bonding type responses of the system. Such critical bonding velocities were predicted for different interfacial cohesive strength values, suggesting that the bonding strength in particle–substrate interfaces could span a range that depends on the surface conditions of the particle and the substrate. It was also predicted that the quality of the particle bonding could be increased if the impact velocity exceeds the critical velocity. A method to predict a lower bound for the interfacial bonding energy was also presented. It was shown that the interfacial bonding energy for the different materials considered would have to be at least on the order of 10–60 J/m2 for cohesion to take place. The general methodology presented in this work can be extended to investigate various materials and impact conditions.


1976 ◽  
Vol 31 ◽  
pp. 243-247
Author(s):  
G. Eichhorn

AbstractImpact experiments have been performed with the 2 MV dust accelerator; the dependence of the maximum light flash energy and intensity on the projectile mass and velocity has been determined experimentally. The temperature of the radiating gas and plasma was estimated to be in the range from 2500K to 5000K, depending on the impact velocity. The distribution of the maximum ejecta speed as well as the normalized distribution of ejected mass have been determined as a function of the ejection angle. A rough estimate of the degree of vaporization of the displaced mass was obtained.


2005 ◽  
Vol 297-300 ◽  
pp. 1315-1320
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin ◽  
Chang Min Suh

In order to investigate the effect of a confinement condition on the damage induced by a spherical impact, an experimental setup that can impact contact pressure to the specimen through a pressing die was composed. The steel and the WC balls in 3mm diameter impacted to the soda-lime glass specimen with dimension of 33×33×8m in the impact velocity range of 30m/s to 200m/s. Three different conditions are given for the impact damage investigation, which are the case without a pressing die and the cases of p=0MPa and p=200MPa with a pressing die. The stress distribution in the glass specimen by impacting the particle was also evaluated using MARC s/w system. The particle impact produced various kinds of the damage such as the ring and the cone cracks, the radial cracks and the craters. The contact pressure applied to the specimen changed stress fields in the specimen. The damage zones of the specimen without a pressing die increased as the impact velocity increased. The damage extents in the specimen with the contact pressure of 200MPa were reduced as compared with the case of those without a pressing die.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
S. Jin ◽  
L. Deng ◽  
J. Yang ◽  
S. Sun ◽  
D. Ning ◽  
...  

This paper presents a smart passive MR damper with fast-responsive characteristics for impact mitigation. The hybrid powering system of the MR damper, composed of batteries and self-powering component, enables the damping of the MR damper to be negatively proportional to the impact velocity, which is called rate-dependent softening effect. This effect can keep the damping force as the maximum allowable constant force under different impact speed and thus improve the efficiency of the shock energy mitigation. The structure, prototype and working principle of the new MR damper are presented firstly. Then a vibration platform was used to characterize the dynamic property and the self-powering capability of the new MR damper. The impact mitigation performance of the new MR damper was evaluated using a drop hammer and compared with a passive damper. The comparison results demonstrate that the damping force generated by the new MR damper can be constant over a large range of impact velocity while the passive damper cannot. The special characteristics of the new MR damper can improve its energy dissipation efficiency over a wide range of impact speed and keep occupants and mechanical structures safe.


Author(s):  
Zhongchao Deng ◽  
Dagang Zhang ◽  
Xiongliang Yao

This paper presents a new kind of vibration reduction and impact resistance isolator system based on magnetorheological technique, and its experiment results. The vibration and impact experiments were designed using MTS hydraulic loading system. There were many load cases being applied in the experiment with different mass of the model, exciting forces, and controllable electricity of MR damper (Magnetorheological Damper). The experiment results indicate that this isolator system can control the vibration response very well, especially near the natural frequency of the system; and the isolator system has a good performance in the impact experiment too, the response acceleration was evidently reduced, but the characteristic of MR damper was different form its performance in vibration experiment.


Sign in / Sign up

Export Citation Format

Share Document