scholarly journals Biosorption of cationic Hg2+ and Remazol brilliant blue anionic dye from binary solution using Gelidium corneum biomass

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady Ali El-Naggar ◽  
Ragaa A. Hamouda ◽  
Ayman Y. El-Khateeb ◽  
Nashwa H. Rabei

AbstractRemazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Ragaa A. Hamouda ◽  
Amna A. Saddiq ◽  
Monagi H. Alkinani

AbstractTextile wastewater contains large quantities of azo dyes mixed with various contaminants especially heavy metal ions. The discharge of effluents containing methyl orange (MO) dye and Cu2+ ions into water is harmful because they have severe toxic effects to humans and the aquatic ecosystem. The dried algal biomass was used as a sustainable, cost-effective and eco-friendly for the treatment of the textile wastewater. Box–Behnken design (BBD) was used to identify the most significant factors for achieving maximum biosorption of Cu2+ and MO from aqueous solutions using marine alga Fucus vesiculosus biomass. The experimental results indicated that 3 g/L of F. vesiculosus biomass was capable of removing 92.76% of copper and 50.27% of MO simultaneously from aqueous solution using MO (60 mg/L), copper (200 mg/L) at pH 7 within 60 min with agitation at 200 rpm. The dry biomass was also investigated using SEM, EDS, and FTIR before and after MO and copper biosorption. FTIR, EDS and SEM analyses revealed obvious changes in the characteristics of the algal biomass as a result of the biosorption process. The dry biomass of F. vesiculosus can eliminate MO and copper ions from aquatic effluents in a feasible and efficient method.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Nur Afiqah Hazirah Mohamad Zaidi ◽  
Liew Wei Jing ◽  
Linda B. L. Lim

The main objective of this study is to investigate the ability of Nephelium mutabile (Pulasan) leaves (PL) in removing toxic brilliant green (BG) dye using the adsorption method. Batch experiments were conducted on the adsorption of BG dye using PL with a contact time of 3.5 h. Adsorption isotherm studies were analysed using six isotherm models, namely Langmuir, Freundlich, Temkin, Dubinin-Radushkevich (D-R), Redlich-Peterson (R-P) and Sips, and the results showed that Sips is the model that best fits the experimental data, with a maximum adsorption capacity (amax) of 130.3 mg g-1. The point of zero charge (pHPZC) of PL was found to be at pH 5.29. Regeneration studies showed that PL can be recovered and reused, especially after treatment with NaOH. This study demonstrates that PL can be considered as a reasonably good and cost-effective biosorbent for BG under our experimental conditions.


2020 ◽  
Vol 10 (11) ◽  
Author(s):  
Yohanis Birhanu ◽  
Seyoum Leta ◽  
Getachew Adam

AbstractNowadays, Cr-loaded wastewater released from industrial activities pose an increasing risk to human health and the environment. Adsorption processes have been widely used for the removal of chromium from the waste stream. In this regard, natural adsorbents are the most preferable and cost-effective methods. In this study, the efficiency of Odaracha adsorbent as a novel green technology in the removal of chromium from synthetic wastewater is analyzed. Batch adsorption experiments were conducted to evaluate the effect of contact time, pH, adsorbent dose, and initial concentration of adsorbate on Cr removal. The surface morphology of Odaracha adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. Experimental results showed that Odaracha adsorbent could perform effectively in a wide range of experimental conditions. However, in optimum experimental conditions, such as 180-min contact time, pH 3, and 15 g/L of adsorbent dose Odaracha adsorbent removes 94.68% of Cr from an aqueous solution having 110 mg/L of Cr concentration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Nashwa H. Rabei ◽  
Sahar E. El-Malkey

Abstract Dyes constitute an important group of organic contaminants and are recognized for its harmful effects on the aquatic environments and humans. Heavy metals are also the largest group of inorganic pollutants due to their accumulation in the environment, contaminate food chains and cause adverse effects on the living organisms. Biosorption capacity of Ulva lactuca biomass was assessed in batch experiments for simultaneous removal of Pb2+ and Congo red dye from binary solution. The process variables effects on Congo red dye and Pb2+ removal percentages were explored by performing 50 experiments using Face-centered central composite design. The highest removal percentages of Congo red dye (97.89%) and Pb2+ (98.78%) were achieved in the run no. 24, using 100 mg/L Congo red dye, 200 mg/L Pb2+, 3 g/L algal biomass, initial pH 6 and contact time was 120 min at 30 °C. FTIR analysis of the algal biomass showed the existence of many functional groups responsible for the biosorption process. After the biosorption process, SEM analysis revealed obvious morphological changes including surface shrinkage and the presence of new glossy Pb2+ particles, and the EDS spectra reveals presence of additional Pb2+ peak confirming the capacity of Ulva lactuca biomass to remove Pb2+ from binary solution.


2017 ◽  
Vol 20 (1) ◽  
pp. 25-32 ◽  

A wide range of technologies has been developed for the removal of dyes from wastewaters to decrease their environmental impact. Wastewater containing dyes is generally treated using more than one process such as adsorption/biosorption. In this study, effects of initial pH (2-8), initial azo dye concentration (Co:25-200 mg/l), contact time (tc:2.5-1440 min) and amount of waste sludge (m:1-15 g/l) were studied by natural and modified dried waste aerobic sludge (WS) in a lab-scale batch study and also optimized by employing response surface methodology (RSM)-Box-Behnken Model for Maxilon Red GRL(MRGRL) and Everzol Red (ER) removal from wastewaters. The optimum experimental conditions were found to be pH=5, Co= 112.5 mg/l, tc= 180 min. and m= 15g/l for dyes and MRGRL and ER removal was determined as about 97% and 95.85%, respectively. The results clearly showed that amount of WS and contact time are the most important parameters for color removal. FTIR and SEM (scanning electron microscope) images were used to understand morphology and structural character of WS and after biosorption process. D-R biosorption isotherm model was used in order to determine type of biosorption mechanism. The E value of D-R isotermisotherm model was found to be 7.071 for both dye. Pseudo-second order and intraparticle diffusion (Weber-Morris) models were suitable for biosorption kinetics. 0,1 M HCl and NaOH were used for desorption studies. Effect of ionic strength (NaCl) was not observed between 0,5-1 mol/L NaCl on to biosorption efficiency. WS (biowaste), Natural or modified, one of the low-cost biosorbent, can be used for removal of azo dye from wastewaters.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4462
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
Konstantin Vergel ◽  
Nadezhda Popova ◽  
...  

Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral–organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing batch systems under different experimental conditions was tested. The obtained biosorbent was characterized using neutron activation, SEM, and FTIR techniques. It was established that maximum removal of cations, up to 100%, was achieved at pH 6.0. Several mathematical models were applied to describe the equilibrium and kinetics data. The maximum adsorption capacity of the hybrid biosorbent, calculated using the Langmuir model, varied from 3.6 to 3.9 mg/g. Negative Gibbs energy values and positive ∆H° values indicate the spontaneous and endothermic character of the biosorption process. The effects of several parameters (pH and biosorbent dosage) on Ni(II) removal from real effluent, containing nickel with a concentration of 125 mg/L, were investigated. The optimal pH for Ni(II) removal was 5.0–6.0 and an increase of sorbent dosage from 0.5 to 2.0 led to an increase in Ni(II) removal from 17% to 27%. At two times effluent dilution, maximum Ni(II) removal of 26% was attained at pH 6.0 and sorbent dosage of 1.0 g. A 12-fold effluent dilution resulted in the removal of 72% of Ni(II) at the same pH and sorbent dosage values. The obtained hybrid biosorbent can be used for Ni(II) removal from industrial effluents with low Ni(II) concentrations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Nashwa H. Rabei

Abstract The pollution of water by heavy metal ions and dyes, particularly from industrial effluents, has become a global environmental issue. Therefore, the treatment of wastewater generated from different industrial wastes is essential to restore environmental quality. The efficiency of Gracilaria seaweed biomass as a sustainable biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from aqueous solution was studied. Optimization of the biosorption process parameters was performed using face-centered central composite design (FCCCD). The highest bioremoval percentages of Ni2+ and methylene blue were 97.53% and 94.86%; respectively, obtained under optimum experimental conditions: 6 g/L Gracilaria biomass, initial pH 8, 20 mg/L of methylene blue, 150 mg/L of Ni2+ and 180 min of contact time. Fourier Transform Infrared Spectroscopy (FTIR) spectra demonstrated the presence of methyl, alkynes, amide, phenolic, carbonyl, nitrile and phosphate groups which are important binding sites involved in Ni2+ and methylene blue biosorption process. SEM analysis reveals the appearance of shiny large particles and layers on the biosorbent surface after biosorption that are absent before the biosorption process. In conclusion, it is demonstrated that the Gracilaria seaweed biomass is a promising, biodegradable, ecofriendly, cost-effective and efficient biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from wastewater effluents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kahina Bouhadjra ◽  
Wahiba Lemlikchi ◽  
Azedine Ferhati ◽  
Samuel Mignard

AbstractIn the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g−1 compared to PP (100 mg g−1) and PPa (125 mg g−1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 279 ◽  
Author(s):  
Marija Stjepanović ◽  
Natalija Velić ◽  
Antonela Galić ◽  
Indira Kosović ◽  
Tamara Jakovljević ◽  
...  

The aim of the study was to screen the waste wood biomass of 10 wood species as biosorbents for synthetic dye Congo Red (CR) removal from water and to single out the most efficient species for further batch biosorption experiments. Euroamerican poplar (EP), the most efficient species achieving 71.8% CR removal and biosorption capacity of 3.3 mg g−1, was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). Different factors affecting the biosorption process were investigated: initial biosorbent concentration (1–10 g dm−3), contact time (5–360 min), initial CR concentration (10–100 mg dm−3), and the initial pH (pH = 4–9). The results showed that CR removal efficiency increased with the increase of biosorbent concentration and contact time. Increase of initial CR concentration led to an increase of the biosorption capacity, but also a decrease of CR removal efficiency. The highest CR removal efficiency was achieved at pH = 4, while at pH = 9 a significant decrease was noticed. The percentage of CR removal from synthetic wastewater was 18.6% higher than from model CR solution. The Langmuir model fitted well the biosorption data, with the maximum biosorption capacity of 8 mg g−1. The kinetics data were found to conform to the pseudo-second-order kinetics model.


1982 ◽  
Vol 36 (5) ◽  
pp. 576-581 ◽  
Author(s):  
Tuan Vo-Dinh

This paper discusses the figures of merit associated with the synchronous luminescence (SL) technique in multicomponent analysis of complex samples. Spectral interferences and experimental factors that influence the choice of experimental conditions are investigated. The efficacy of SL is demonstrated in the direct determination of anthracene and 2-methylanthracene in a raw coal liquid. The application of the second-derivative technique to the SL measurement of organic samples is shown. Special emphasis is directed toward the applicability of the SL technique as a practical and cost-effective screening procedure in the routine analysis of complex organic samples.


Sign in / Sign up

Export Citation Format

Share Document