scholarly journals Metal Removal from Nickel-Containing Effluents Using Mineral–Organic Hybrid Adsorbent

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4462
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
Konstantin Vergel ◽  
Nadezhda Popova ◽  
...  

Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral–organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing batch systems under different experimental conditions was tested. The obtained biosorbent was characterized using neutron activation, SEM, and FTIR techniques. It was established that maximum removal of cations, up to 100%, was achieved at pH 6.0. Several mathematical models were applied to describe the equilibrium and kinetics data. The maximum adsorption capacity of the hybrid biosorbent, calculated using the Langmuir model, varied from 3.6 to 3.9 mg/g. Negative Gibbs energy values and positive ∆H° values indicate the spontaneous and endothermic character of the biosorption process. The effects of several parameters (pH and biosorbent dosage) on Ni(II) removal from real effluent, containing nickel with a concentration of 125 mg/L, were investigated. The optimal pH for Ni(II) removal was 5.0–6.0 and an increase of sorbent dosage from 0.5 to 2.0 led to an increase in Ni(II) removal from 17% to 27%. At two times effluent dilution, maximum Ni(II) removal of 26% was attained at pH 6.0 and sorbent dosage of 1.0 g. A 12-fold effluent dilution resulted in the removal of 72% of Ni(II) at the same pH and sorbent dosage values. The obtained hybrid biosorbent can be used for Ni(II) removal from industrial effluents with low Ni(II) concentrations.

2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady Ali El-Naggar ◽  
Ragaa A. Hamouda ◽  
Ayman Y. El-Khateeb ◽  
Nashwa H. Rabei

AbstractRemazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abeer Abdulkhalek Ghoniem ◽  
Noura El-Ahmady El-Naggar ◽  
WesamEldin I. A. Saber ◽  
Mohammed S. El-Hersh ◽  
Ayman Y. El-khateeb

Abstract Heavy metals are environmental pollutants affect the integrity and distribution of living organisms in the ecosystem and also humans across the food chain. The study targeted the removal of copper (Cu2+) from aqueous solutions, depending on the biosorption process. The bacterial candidate was identified using 16S rRNA sequencing and phylogenetic analysis, in addition to morphological and cultural properties as Azotobacter nigricans NEWG-1. The Box-Behnken design was applied to optimize copper removal by Azotobacter nigricans NEWG-1 and to study possible interactive effects between incubation periods, pH and initial CuSO4 concentration. The data obtained showed that the maximum copper removal percentage of 80.56% was reached at run no. 12, under the conditions of 200 mg/L CuSO4, 4 days’ incubation period, pH, 8.5. Whereas, the lowest Cu2+ removal (12.12%) was obtained at run no.1. Cells of Azotobacter nigricans NEWG-1 before and after copper biosorption were analyzed using FTIR, EDS and SEM. FTIR analysis indicates that several functional groups have participated in the biosorption of metal ions including hydroxyl, methylene, carbonyl, carboxylate groups. Moreover, the immobilized bacterial cells in sodium alginate-beads removed 82.35 ± 2.81% of copper from the aqueous solution, containing an initial concentration of 200 mg/L after 6 h. Azotobacter nigricans NEWG-1 proved to be an efficient biosorbent in the elimination of copper ions from environmental effluents, with advantages of feasibility, reliability and eco-friendly.


e-Polymers ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 287-295 ◽  
Author(s):  
R. Rathika ◽  
Oh Byung-Taek ◽  
B. Vishnukumar ◽  
K. Shanthi ◽  
S. Kamala-Kannan ◽  
...  

AbstractThe role of polypyrrole-cellulose (PPy-Ce) nanocomposite for the removal of Ni(II) from aqueous solution was investigated by batch experiments. The PPy-Ce nanocomposite was prepared by chemical oxidate polymerization of pyrrole monomer with cellulose. Transmission electron micrography (TEM) showed the size of the particles varied from 80 to 95 nm. The characteristic C-O, O-H, C-N and C-C vibrations in the Fourier transform infrared (FTIR) spectra indicate that the cellulose successfully integrated with the pyrrole. Influence of experimental variables such as pH, contact time, adsorbent dose and initial Ni(II) concentration were optimized using the response surface methodology (RSM) based Box-Behnken design (BBD). The optimal conditions for maximum removal of Ni(II) were pH 8, time 65 min, adsorbent dose 0.3 mg/l and Ni(II) concentration 50 mg/l. The maximum removal efficiency under optimized conditions was >94%. The results indicate that BBD could be used to optimize experimental conditions for metal removal from aqueous solution.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Nashwa H. Rabei

Abstract The pollution of water by heavy metal ions and dyes, particularly from industrial effluents, has become a global environmental issue. Therefore, the treatment of wastewater generated from different industrial wastes is essential to restore environmental quality. The efficiency of Gracilaria seaweed biomass as a sustainable biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from aqueous solution was studied. Optimization of the biosorption process parameters was performed using face-centered central composite design (FCCCD). The highest bioremoval percentages of Ni2+ and methylene blue were 97.53% and 94.86%; respectively, obtained under optimum experimental conditions: 6 g/L Gracilaria biomass, initial pH 8, 20 mg/L of methylene blue, 150 mg/L of Ni2+ and 180 min of contact time. Fourier Transform Infrared Spectroscopy (FTIR) spectra demonstrated the presence of methyl, alkynes, amide, phenolic, carbonyl, nitrile and phosphate groups which are important binding sites involved in Ni2+ and methylene blue biosorption process. SEM analysis reveals the appearance of shiny large particles and layers on the biosorbent surface after biosorption that are absent before the biosorption process. In conclusion, it is demonstrated that the Gracilaria seaweed biomass is a promising, biodegradable, ecofriendly, cost-effective and efficient biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from wastewater effluents.


2011 ◽  
Vol 340 ◽  
pp. 236-240
Author(s):  
Jian Feng Ma ◽  
Jian Ming Yu ◽  
Bing Ying Cui ◽  
Ding Long Li ◽  
Juan Dai

Inorganic-organic-bentonite was synthesized by modification of bentonite by Hydroxy-iron and surfactant, which could be applied in dye removal by adsorption and catalysis. The removal of acid dye Orange II was studied at various factors such as time and pH of solution. The results showed that the inorganic-organic-bentonite could efficiently remove the dye with efficiency of 96.22%. The maximum adsorption capacity is 76 mg/g. The pH of solution has significant effect on both adsorption and catalysis. When pH was 4, the maximum removal efficiency of adsorption and catalysis were 97.57% and 87.23%, respectively. After degradation, the secondary pollution was diminished and the bentonite could be reused.


2010 ◽  
Vol 171-172 ◽  
pp. 49-52 ◽  
Author(s):  
Chang Li Yu ◽  
Zhi Peng Lu ◽  
Fa Zhi Ge ◽  
Er Li Zhao

The present study was undertaken to evaluate the feasibility of Pseudomonas fluorescens biomass for the removal of cadmium ions from aqueous solutions. Batch experiments were performed to study the adsorption of cadmium on pH, Pseudomonas fluorescens biomass adsorbent with respect to initial Cd(II) concentration, contact time and biomass dose. The experimental data were modeled by Langmuir and Freundlich isotherm models. Langmuir model resulted in the best fit of the adsorption data. The maximum adsorption capacity for Cd(II) was 66.25 mg/g (pH 5.0 and 5 g/L biomass dose). Kinetics of adsorption followed second-order rate equations. The FTIR results of Pseudomonas fluorescens biomass showed that biomass has different functional groups and these functional groups are able to react with metal ion in aqueous solution. The results of the present study suggest that Pseudomonas fluorescens biomass can be used beneficially in treating industrial effluents containing heavy metal ions.


2010 ◽  
Vol 171-172 ◽  
pp. 15-18
Author(s):  
Zeng Quan Ji ◽  
Tian Hai Wang ◽  
Kai Hong Luo ◽  
Yao Qing Wang

An extracellular biopolymer (PFC02) produced by Pseudomonas alcaligenes was used as an alternative biosorbent to remove toxic Cd(II) metallic ions from aqueous solutions. The effect of experimental parameters such as pH, Cd(II) initial concentration and contact time on the adsorption was studied. It was found that pH played a major role in the adsorption process, the optimum pH for the removal of Cd(II) was 6.0. The FTIR spectra showed carboxyl, hydroxyl and amino groups of the PFC02 were involved in chemical interaction with the Cd(II) ions. Equilibrium studies showed that Cd(II) adsorption data followed Langmuir model. The maximum adsorption capacity (qmax) for Cd(II) ions was estimated to be 93.55 mg/g. The kinetic studies showed that the kinetic rates were best fitted to the pseudo-second-order model. The study suggestted that the novel extracellular biopolymer biosorbent have potential applications for removing Cd(II) from wastewater.


2010 ◽  
Vol 75 (9) ◽  
pp. 1291-1302 ◽  
Author(s):  
Mariliis Sihtmäe ◽  
Monika Mortimer ◽  
Anne Kahru ◽  
Irina Blinova

Aromatic amines (anilines and related derivates) are an important class of environmental pollutants that can be released to the aquatic environment as industrial effluents or as breakdown products of pesticides and dyes. The toxicities of aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline and 3,5-dichloroaniline towards a multitrophic test battery comprised of bacteria Aliivibrio fischeri (formerly Vibrio fischeri), a ciliated protozoan Tetrahymena thermophila and two crustaceans (Daphnia magna and Thamnocephalus platyurus) were investigated. Under the applied test conditions, the toxicities of the anilines notably varied among the test species. The bacteria and protozoa were much less sensitive towards the anilines than the crustaceans: EC50 values 13-403 mg L-1 versus 0.13-15.2 mg L-1. No general tendency between toxicity and the chemical structure of the anilines (the degree of chloro-substitution and the position of the chloro-substituents) was found in the case of all the tested aquatic species. The replacement of the artificial test medium (ATM) by the river water remarkably decreased the toxicity of anilines to crustaceans but not to protozoa. This research is part of the EU 6th Framework Integrated Project OSIRIS, in which ecotoxicogenomic studies of anilines (e.g., for Daphnia magna) will also be performed that may help to clarify the mechanisms of toxicity of different anilines.


2018 ◽  
Vol 15 (30) ◽  
pp. 221-240
Author(s):  
E. C. CESARINO ◽  
D. S. MULHOLLAND ◽  
W. FRANCISCO

This study developed a new analytical method using Molecular Absorption Spectroscopy (MAS) to track the ion cover in adsorption solution per peel (mesocarp) of Baru (Dipteryx alata). The adsorption study was conducted at different pH and contact time (kinetic), encountering 4.0 as the best pH for adsorption experimental conditions. The variation of contact time showed a pseudo-second-order adsorption kinetic behavior. The interpretation of the isotherms allowed to approach the Langmuir model with R² of 0.918 and to determine the maximum adsorption capacity (qmáx) as 11.481 mg.g⁻¹. The characterization of biomass by MAS in the Infrared (FT-IR) identified the possible functional groups belonging to protein, fatty acids and lipids, while thermal analysis (TG-DSC) showed a greater removal of inorganic matter by the biomass washed with water. The method underwent analytical validation, being classified as specific, sensitive, linear, robust, precise and accurate, with LD (limit of detection) and LQ (limit of quantification) equal to 3.873 and 12.912 mg.L⁻¹, respectively. The results obtained demonstrated the potential use of mesocarp Baru as a natural adsorbent for copper ions in solution, opening power for future expansion and improvement of the method.


Sign in / Sign up

Export Citation Format

Share Document