scholarly journals Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Ragaa A. Hamouda ◽  
Amna A. Saddiq ◽  
Monagi H. Alkinani

AbstractTextile wastewater contains large quantities of azo dyes mixed with various contaminants especially heavy metal ions. The discharge of effluents containing methyl orange (MO) dye and Cu2+ ions into water is harmful because they have severe toxic effects to humans and the aquatic ecosystem. The dried algal biomass was used as a sustainable, cost-effective and eco-friendly for the treatment of the textile wastewater. Box–Behnken design (BBD) was used to identify the most significant factors for achieving maximum biosorption of Cu2+ and MO from aqueous solutions using marine alga Fucus vesiculosus biomass. The experimental results indicated that 3 g/L of F. vesiculosus biomass was capable of removing 92.76% of copper and 50.27% of MO simultaneously from aqueous solution using MO (60 mg/L), copper (200 mg/L) at pH 7 within 60 min with agitation at 200 rpm. The dry biomass was also investigated using SEM, EDS, and FTIR before and after MO and copper biosorption. FTIR, EDS and SEM analyses revealed obvious changes in the characteristics of the algal biomass as a result of the biosorption process. The dry biomass of F. vesiculosus can eliminate MO and copper ions from aquatic effluents in a feasible and efficient method.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady Ali El-Naggar ◽  
Ragaa A. Hamouda ◽  
Ayman Y. El-Khateeb ◽  
Nashwa H. Rabei

AbstractRemazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abeer Abdulkhalek Ghoniem ◽  
Noura El-Ahmady El-Naggar ◽  
WesamEldin I. A. Saber ◽  
Mohammed S. El-Hersh ◽  
Ayman Y. El-khateeb

Abstract Heavy metals are environmental pollutants affect the integrity and distribution of living organisms in the ecosystem and also humans across the food chain. The study targeted the removal of copper (Cu2+) from aqueous solutions, depending on the biosorption process. The bacterial candidate was identified using 16S rRNA sequencing and phylogenetic analysis, in addition to morphological and cultural properties as Azotobacter nigricans NEWG-1. The Box-Behnken design was applied to optimize copper removal by Azotobacter nigricans NEWG-1 and to study possible interactive effects between incubation periods, pH and initial CuSO4 concentration. The data obtained showed that the maximum copper removal percentage of 80.56% was reached at run no. 12, under the conditions of 200 mg/L CuSO4, 4 days’ incubation period, pH, 8.5. Whereas, the lowest Cu2+ removal (12.12%) was obtained at run no.1. Cells of Azotobacter nigricans NEWG-1 before and after copper biosorption were analyzed using FTIR, EDS and SEM. FTIR analysis indicates that several functional groups have participated in the biosorption of metal ions including hydroxyl, methylene, carbonyl, carboxylate groups. Moreover, the immobilized bacterial cells in sodium alginate-beads removed 82.35 ± 2.81% of copper from the aqueous solution, containing an initial concentration of 200 mg/L after 6 h. Azotobacter nigricans NEWG-1 proved to be an efficient biosorbent in the elimination of copper ions from environmental effluents, with advantages of feasibility, reliability and eco-friendly.


2013 ◽  
Vol 8 (3-4) ◽  
pp. 469-478 ◽  
Author(s):  
Sandip S. Magdum ◽  
Gauri P. Minde ◽  
Upendra S. Adhyapak ◽  
V. Kalyanraman

The aim of this work was to optimize the biodegradation of polyvinyl alcohol (PVA) containing actual textile wastewater for a sustainable treatment solution. The isolated microbial consortia of effective PVA degrader namely Candida Sp. and Pseudomonas Sp., which were responsible for symbiotic degradation of chemical oxidation demand (COD) and PVA from desizing wastewater. In the process optimization, the maximum aeration was essential to achieve a high degradation rate, where as stirring enhances further degradation and foam control. Batch experiments concluded with the need of 16 lpm/l and 150 rpm of air and stirring speed respectively for high rate of COD and PVA degradation. Optimized process leads to 2 days of hydraulic retention time (HRT) with 85–90% PVA degradation. Continuous study also confirmed above treatment process optimization with 85.02% of COD and 90.3% of PVA degradation of effluent with 2 days HRT. This study gives environment friendly and cost effective solution for PVA containing textile wastewater treatment.


2021 ◽  
Vol 10 (5) ◽  
pp. 971
Author(s):  
Kristoff Hammerich ◽  
Jens Pollack ◽  
Alexander F. Hasse ◽  
André El Saman ◽  
René Huber ◽  
...  

Background: A major disadvantage of current spacers for two-stage revision total knee arthroplasty (R-TKA) is the risk of (sub-) luxation during mobilization in the prosthesis-free interval, limiting their clinical success with detrimental consequences for the patient. The present study introduces a novel inverse spacer, which prevents major complications, such as spacer (sub-) luxations and/or fractures of spacer or bone. Methods: The hand-made inverse spacer consisted of convex tibial and concave femoral components of polymethylmethacrylate bone cement and was intra-operatively molded under maximum longitudinal tension in 5° flexion and 5° valgus position. Both components were equipped with a stem for rotational stability. This spacer was implanted during an R-TKA in 110 knees with diagnosed or suspected periprosthetic infection. Postoperative therapy included a straight leg brace and physiotherapist-guided, crutch-supported mobilization with full sole contact. X-rays were taken before and after prosthesis removal and re-implantation. Results: None of the patients experienced (sub-) luxations/fractures of the spacer, periprosthetic fractures, or soft tissue compromise requiring reoperation. All patients were successfully re-implanted after a prosthesis-free interval of 8 weeks, except for three patients requiring an early exchange of the spacer due to persisting infection. In these cases, the prosthetic-free interval was prolonged for one week. Conclusion: The inverse spacer in conjunction with our routine procedure is a safe and cost-effective alternative to other articulating or static spacers, and allows crutch-supported sole contact mobilization without major post-operative complications. Maximum longitudinal intra-operative tension in 5° flexion and 5° valgus position appears crucial for the success of surgery.


2020 ◽  
Vol 32 (S1) ◽  
pp. 116-116
Author(s):  
M Pires ◽  
A Antunes ◽  
C Gameiro ◽  
C Pombo

Community-focused programs that promote active and healthy aging can help preserve cognitive capacities, prevent or reverse cognitive deficits. Computer-based cognitive training (CCT) is a promising non-pharmacological, cost -effective and accessible intervention to face the effects of age-related cognitive decline. Previous studies proved CCT to have equal or better efficacy compared to traditional interventions. This comparative multifactorial study aims to test the efficacy of a CCT in a non-randomized community sample of 74 older adults: G1-CCT Experimental group (n=43) (Mean age M=72.21, SD=12.65) and G2- Paper-Pencil Control group (n=31; M=77.94, SD=10.51). Pensioners (97.3%), mostly women (83.8 %) with basic education (51.4%) and without dementia diagnosis, completed a cognitive training program of 17 or 34 group sessions (twice a week). G2 undertook a classic cognitive paper-pencil stimuli tasks. G1, performed, additionally, individual CCT with COGWEB® in a multimodal format (intensive training of attention, calculation, memory, gnosis, praxis, executive functions). Both groups completed Portuguese versions of Mini -Mental State Examination (MMSE),Montreal Cognitive Assessment (MOCA); Geriatric Depressive Scale (GDS); Mini Dependence Assessment (MDA); WHOOQL 5 and Social Support Satisfaction Scale (ESSS) before and after participating in the program. Both groups reported better post-test scores on basic cognitive functions (MMSE, MOCA), Depression symptoms (GDS-30), subjective well-being and quality of life (WHOOQL-5). G1 presented higher MOCA and lower GDS scores before and after CCT, although, group differences become less expressive when interaction effects are considered. Results are in line with findings from past studies, CCT supported by the new technologies, is as a relevant cost-effective therapeutic tool for health professionals working with older adults. Particularly for preventive purposes of neuro-cognitive disorders.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


Open Heart ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. e001380
Author(s):  
Rasmus Bo Hasselbalch ◽  
Mia Marie Pries-Heje ◽  
Sarah Louise Kjølhede Holle ◽  
Thomas Engstrøm ◽  
Merete Heitmann ◽  
...  

ObjectiveTo prospectively validate the CT-Valve score, a new risk score designed to identify patients with valvular heart disease at a low risk of coronary artery disease (CAD) who could benefit from multislice CT (MSCT) first instead of coronary angiography (CAG).MethodsThis was a prospective cohort study of patients referred for valve surgery in the Capital Region of Denmark and Odense University Hospital from the 1 February 2015 to the 1 February 2017. MSCT was implemented for patients with a CT-Valve score ≤7 at the referring physician’s discretion. Patients with a history of CAD or chronic kidney disease were excluded. The primary outcome was the proportion of patients needing reevaluation with CAG after MSCT and risk of CAD among the patients determined to be low to intermediate risk.ResultsIn total, 1149 patients were included. The median score was 9 (IQR 3) and 339 (30%) had a score ≤7. MSCT was used for 117 patients. Of these 29 (25%) were reevaluated and 9 (7.7%) had CAD. Of the 222 patients with a score ≤7 that did not receive an MSCT, 14 (6%) had significant CAD. The estimated total cost of evaluation among patients with a score ≤7 before implementation was €132 093 compared with €79 073 after, a 40% reduction. Similarly, estimated total radiation before and after was 608 mSv and 362 mSv, a 41% reduction. Follow-up at a median of 32 months (18–48) showed no ischaemic events for patients receiving only MSCT.ConclusionThe CT-Valve score is a valid method for determining risk of CAD among patients with valvular heart disease. Using a score ≤7 as a cut-off for the use of MSCT is safe and cost-effective.


2021 ◽  
Vol 108 (Supplement_7) ◽  
Author(s):  
Ethlinn Patton ◽  
Dapo Olaleye ◽  
Stella Smith

Abstract Aims Methods Data was collected retrospectively between October to December 2020. Patient paper notes were reviewed on three dates before and after implementation of the ward round sticker, gathering data from 26 and 27 patients respectively. Data was collected across a series of weeks to ensure a variety of clinicians present on ward round, in order to accurately reflect current practice. Results An improvement in rate of documentation was seen in 10 out of 12 key clinical variables. Some of the largest increases were seen in consideration of VTE status; 96.3% (n = 26) from 7.69% (n = 2), and recording oral intake; 85.2% (n = 23) from 23.1% (n = 6.) Conclusions We know that poor quality documentation is associated with increased rates of adverse events for patients,[1] so it is imperative to address both what is being covered, and how it is being recorded. Staff reported that the use of ward round stickers improved legibility of documentation and made it easier to locate important information. This simple, cost effective intervention has improved the consistency of daily reviews, and streamlined communication within the multidisciplinary team.


2015 ◽  
Vol 19 (6) ◽  
pp. 2663-2672 ◽  
Author(s):  
A.-M. Kurth ◽  
C. Weber ◽  
M. Schirmer

Abstract. In this study, we investigated whether river restoration was successful in re-establishing groundwater–surface water interactions in a degraded urban stream. Restoration measures included morphological changes to the river bed, such as the installation of gravel islands and spur dykes, as well as the planting of site-specific riparian vegetation. Standard distributed temperature sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater–surface water interactions in two reference streams and an experimental reach of an urban stream before and after its restoration. Radon-222 analyses were utilized to validate the losing stream conditions of the urban stream in the experimental reach. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater–surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater–surface water interactions. With the methods presented in this publication, it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.


2020 ◽  
Vol 32 (5) ◽  
pp. 1121-1127
Author(s):  
Mahesh Kumar Gupta ◽  
P.K. Tandon ◽  
Neelam Shukla ◽  
Harendra Singh ◽  
Shalini Srivastava

Acid activated carbon obtained from cheap, non-toxic and locally available banana peel was used as a low cost and efficient adsorbent for the removal of dyes methyl orange and rhodamine-B from the aqueous solution. Changes in the resulting material before and after activation and after treatment were studied by different techniques, such as SEM-EDX, XRD, FTIR measurements. Effects of duration of treatment, amount of banana peel activated carbon, pH, and initial methyl orange and rhodamine-B concentration, on the removal of dye were studied to get optimum conditions for maximum dye removal. Removal efficiency of the activated ash remains almost constant in a wide range of pH from 2.5 to 5.6. In 75 min at room temperature removal of 98.5 % methyl orange (anionic) and 99.0 % rhodamine-B (cationic) dyes with 0.1 g and 0.125 g, respectively was obtained from the contaminated water having 10 ppm dye concentration.


Sign in / Sign up

Export Citation Format

Share Document