scholarly journals Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Nashwa H. Rabei

Abstract The pollution of water by heavy metal ions and dyes, particularly from industrial effluents, has become a global environmental issue. Therefore, the treatment of wastewater generated from different industrial wastes is essential to restore environmental quality. The efficiency of Gracilaria seaweed biomass as a sustainable biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from aqueous solution was studied. Optimization of the biosorption process parameters was performed using face-centered central composite design (FCCCD). The highest bioremoval percentages of Ni2+ and methylene blue were 97.53% and 94.86%; respectively, obtained under optimum experimental conditions: 6 g/L Gracilaria biomass, initial pH 8, 20 mg/L of methylene blue, 150 mg/L of Ni2+ and 180 min of contact time. Fourier Transform Infrared Spectroscopy (FTIR) spectra demonstrated the presence of methyl, alkynes, amide, phenolic, carbonyl, nitrile and phosphate groups which are important binding sites involved in Ni2+ and methylene blue biosorption process. SEM analysis reveals the appearance of shiny large particles and layers on the biosorbent surface after biosorption that are absent before the biosorption process. In conclusion, it is demonstrated that the Gracilaria seaweed biomass is a promising, biodegradable, ecofriendly, cost-effective and efficient biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from wastewater effluents.

2015 ◽  
Vol 69 (7) ◽  
Author(s):  
Mohammad Peydayesh ◽  
Mojgan Isanejad ◽  
Toraj Mohammadi ◽  
Seyed Mohammad Reza Seyed Jafari

AbstractMethylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g


2019 ◽  
Vol 9 (16) ◽  
pp. 3282 ◽  
Author(s):  
Zhongtian Fu ◽  
Song Zhang ◽  
Zhongxue Fu

A series of composite photocatalysts were prepared by using graphene oxide (GO) prepared by modified Hummers method and TiO2 hydrogel prepared by using butyl titanate as raw materials. The composite photocatalyst was characterized through scanning electron microscope(SEM), x ray diffraction (XRD), and Raman spectroscopy, and the degradation effect of pure TiO2 and composite photocatalyst on methylene blue (MB) dye wastewater under different experimental conditions was studied. The results showed that TiO2 in composite photocatalyst was mainly anatase phase and its photocatalytic activity was better than pure TiO2. When the addition of GO reached 15 wt%, the photocatalytic activity was the highest. When 200 mg composite photocatalyst was added to 200 mL synthetic wastewater with a concentration of 10 mg/L and an initial pH of about 8, the degradation rate could reach 95.8% after 2.5 h. It is presumed that the photogenerated charges of GO/TiO2 composite photocatalyst may directly destroy the luminescent groups in the MB molecule and thus decolorize the wastewater, and no other new luminescent groups are generated during the treatment.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
S. Shwetha Priyadharshini ◽  
Jayachamarajapura Pranesh Shubha ◽  
Jaydev Shivalingappa ◽  
Syed Farooq Adil ◽  
Mufsir Kuniyil ◽  
...  

In this work, ZnO nanocrystals (NCs) have been effectively synthesized by a simple, efficient and cost-effective method using coconut husk extract as a novel fuel. The synthesized NCs are characterized by UV-Vis, XRD, FT-IR, SEM, EDX, Raman and PL studies. The obtained ZnO were found to be UV-active with a bandgap of 2.93 eV. The X-ray diffraction pattern confirms the crystallinity of the ZnO with hexagonally structured ZnO with a crystallite size of 48 nm, while the SEM analysis reveals the hexagonal bipyramid morphology. Photocatalytic activities of the synthesized ZnO NCs are used to degrade methylene blue and metanil yellow dyes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura El-Ahmady Ali El-Naggar ◽  
Ragaa A. Hamouda ◽  
Ayman Y. El-Khateeb ◽  
Nashwa H. Rabei

AbstractRemazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.


2017 ◽  
Vol 20 (1) ◽  
pp. 25-32 ◽  

A wide range of technologies has been developed for the removal of dyes from wastewaters to decrease their environmental impact. Wastewater containing dyes is generally treated using more than one process such as adsorption/biosorption. In this study, effects of initial pH (2-8), initial azo dye concentration (Co:25-200 mg/l), contact time (tc:2.5-1440 min) and amount of waste sludge (m:1-15 g/l) were studied by natural and modified dried waste aerobic sludge (WS) in a lab-scale batch study and also optimized by employing response surface methodology (RSM)-Box-Behnken Model for Maxilon Red GRL(MRGRL) and Everzol Red (ER) removal from wastewaters. The optimum experimental conditions were found to be pH=5, Co= 112.5 mg/l, tc= 180 min. and m= 15g/l for dyes and MRGRL and ER removal was determined as about 97% and 95.85%, respectively. The results clearly showed that amount of WS and contact time are the most important parameters for color removal. FTIR and SEM (scanning electron microscope) images were used to understand morphology and structural character of WS and after biosorption process. D-R biosorption isotherm model was used in order to determine type of biosorption mechanism. The E value of D-R isotermisotherm model was found to be 7.071 for both dye. Pseudo-second order and intraparticle diffusion (Weber-Morris) models were suitable for biosorption kinetics. 0,1 M HCl and NaOH were used for desorption studies. Effect of ionic strength (NaCl) was not observed between 0,5-1 mol/L NaCl on to biosorption efficiency. WS (biowaste), Natural or modified, one of the low-cost biosorbent, can be used for removal of azo dye from wastewaters.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4462
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
Konstantin Vergel ◽  
Nadezhda Popova ◽  
...  

Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral–organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing batch systems under different experimental conditions was tested. The obtained biosorbent was characterized using neutron activation, SEM, and FTIR techniques. It was established that maximum removal of cations, up to 100%, was achieved at pH 6.0. Several mathematical models were applied to describe the equilibrium and kinetics data. The maximum adsorption capacity of the hybrid biosorbent, calculated using the Langmuir model, varied from 3.6 to 3.9 mg/g. Negative Gibbs energy values and positive ∆H° values indicate the spontaneous and endothermic character of the biosorption process. The effects of several parameters (pH and biosorbent dosage) on Ni(II) removal from real effluent, containing nickel with a concentration of 125 mg/L, were investigated. The optimal pH for Ni(II) removal was 5.0–6.0 and an increase of sorbent dosage from 0.5 to 2.0 led to an increase in Ni(II) removal from 17% to 27%. At two times effluent dilution, maximum Ni(II) removal of 26% was attained at pH 6.0 and sorbent dosage of 1.0 g. A 12-fold effluent dilution resulted in the removal of 72% of Ni(II) at the same pH and sorbent dosage values. The obtained hybrid biosorbent can be used for Ni(II) removal from industrial effluents with low Ni(II) concentrations.


2015 ◽  
Vol 18 (1) ◽  
pp. 25-37 ◽  

<div> <p>Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials.The potential feasibility of magnetic peanut hulls particle for removal of cationic dye (methylene blue) from aqueous solution was investigated. The effects of various experimental parameters were examined and optimal experimental conditions were decided. Characterization of biosorbent was carried out by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyzer. FT-IR analysis showedthe presence of hydroxyl, carbonyl and carboxyl groups which can involve in the biosorption process. The results in this study indicated that peanut hull was an attractive candidate for removing cationic dyes from dye wastewater. Different kinetic and equilibrium models were applied to the experimental data. Tempkin model was the most fitted isotherm as R<sup>2</sup>= 0.963. While the resulting data for the different parameters studied was suitable to be pseudo second order.&nbsp;</p> </div> <p>&nbsp;</p>


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Author(s):  
Rahmiana Zein ◽  
Mutia Khuratul Aini ◽  
Hermansyah Aziz

Biosorpsi zat warna Rhodamine B menggunakan cangkang Pensi (Corbicula moltkiana) telah dikaji. Percobaan dilakukan dengan system batch guna memperoleh kondisi optimum biosorspi zat warna. Kapasitas biosorpsi zat warna pada pH 2 adalah 0.9958 mg/g, dengan konsentrasi larutan mula-mula 150 mg/L waktu kontak 105 menit, massa biosorben 0.1 g, ukuran partikel 32 µm dan temperature pengeringan biosorben pada 75oC. Model isotherm Langmuir menunjukkan bahwa proses penyerapan berlangsung secara kimia dan biosorpsi homogeny dari adsorbat (Rhodamine B) pada permukaan biosorben membentuk lapisan tunggal dengan nilai R2 0.9966. Analisis XRF menunjukkan bahwa penurunan kadar unsur logam pada cangkang Pensi membuktikan bahwa proses biosorpsi berlangsung dengan pertukaran kation. Hasil analisis spektrum FT-IR membuktikan adanya interaksi antaramolekul Rhodamin B dengan gugus fungsi pada cangkang Pensi. Analisis dengan SEM memperlihatkan bahwa pori-pori cangkang Pensi telah terisi penuh oleh molekul Rhodamin B. Kondisi optimum biosorpsi telah diaplikasikan pada limbah kerupuk merah dengan kapasitas penyerapan sebesar 0,2835 mg/g.   The biosorption of Rhodamine B dyes by Pensi (Corbicula moltkiana) shell has been investigated. The experiment was conducted in batch sistem in order to obtain the optimum conditions of dye biosorption. Biosorption capacity of dye was 0.9958 mg/g at pH 2, initial concentration 150 mg/L, contact time 105 minutes, biosorbent mass 0.1 gram, particle size 32 µ m and biosorbent drying temperature was at 75oC. The Langmuir Isotherm model showed chemisorption and homogeneous biosorption process of adsorbates onto the biosorbent surface formed monolayer dye molecules on the biosorbent surface with R2 value was 0.9966. XRF analysis showed that reduction of metals unsure quantity of pensi shell indicated biosorption process was occupied through cationic exchange. The result of FTIR spectra analysis indicated an interaction between Rhodamin B molecules and functional group of pensi shell. SEM analysis showed that the pensi shell pores were completely filled by Rhodamine B molecules. The optimum condition of biosorption has been aplicated in red chips wastewater industry with biosorption capacity was 0.2835 mg/g.


2019 ◽  
Author(s):  
Chem Int

The study aims to use an adsorbent natural based of Moroccan oil shale of Timahdit area (Y layer) in a physical-chemical adsorption process for treating industrial discharges colorful. The used adsorbent is the insoluble party of the sub-critical extraction of decarbonized oil shale of Timahdit. The tests performed on the methylene blue (MB), showed a strong elimination in the first 10 minutes. The influences of various experimental parameters were studied: mass ratio of adsorbent, time and temperature of thermal treatment, contact time, pH of MB and heating temperature of solution on the parameters of material were studied. The experimental results have shown that the adsorption of methylene blue dye by the adsorbent is more than 90% at initial pH a range 6-7 at room temperature for 30 minutes. The process is simple and the adsorbent produced is a new material with interesting adsorption capacities of moderate cost which does not require an activating agent and can be used as industrial adsorbent for the decontamination of effluents containing organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document