scholarly journals Gait performance of adolescent mice assessed by the CatWalk XT depends on age, strain and sex and correlates with speed and body weight

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Pitzer ◽  
Barbara Kurpiers ◽  
Ahmed Eltokhi

AbstractThe automatization of behavioral tests assessing motor activity in rodent models is important for providing robust and reproducible results and evaluating new therapeutics. The CatWalk system is an observer-independent, automated and computerized technique for the assessment of gait performance in rodents. This method has previously been used in adult rodent models of CNS-based movement disorders such as Parkinson’s and Huntington’s diseases. As motor and gait abnormalities in neuropsychiatric disorders are observed during infancy and adolescence, it became important to validate the CatWalk XT in the gait analysis of adolescent mice and unravel factors that may cause variations in gait performance. Three adolescent wild-type inbred mouse strains, C57BL/6N, DBA/2 and FVB/N, were tested using the CatWalk XT (Version 10.6) for suitable detection settings to characterize several gait parameters at P32 and P42. The same detection settings being suitable for C57BL/6N and DBA/2 mice allowed a direct comparison between the two strains. On the other hand, due to their increased body weight and size, FVB/N mice required different detection settings. The CatWalk XT reliably measured the temporal, spatial, and interlimb coordination parameters in the investigated strains during adolescence. Additionally, significant effects of sex, development, speed and body weight within each strain confirmed the sensitivity of motor and gait functions to these factors. The CatWalk gait analysis of rodents during adolescence, taking the effect of age, strain, sex, speed and body weight into consideration, will decrease intra-laboratory discrepancies and increase the face validity of rodent models of neuropsychiatric disorders.

Organogenesis ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Inga J. Murawski ◽  
Rita W. Maina ◽  
Indra R. Gupta

2020 ◽  
Vol 20 (05) ◽  
pp. 2050021
Author(s):  
RAJESH KUMAR MOHANTY ◽  
STHIRPRANJYAN BISWAL ◽  
PABITRA KUMAR SAHOO ◽  
SAKTI PRASAD DAS ◽  
R. C. MOHANTY ◽  
...  

Background: Adequate research is not reported so far to underline the influence of commonly used polycentric knee joints on gait performance of subjects with trans-femoral amputation. Objective: The intent of this investigation is to analyze prosthetic gait of unilateral traumatic trans-femoral amputees with polycentric four-bar linkage knee and compare it with normal subjects for evaluating any asymmetry in gait performance. Methods: Objective three-dimensional gait analysis of 15 subjects [mean (age): 36.4 (10.7) years] were performed in gait lab through force plate and optoelectronic devices to measure temporal-spatial parameters, kinematic and kinetic performances. Gait patterns of amputees were compared with those of 15 individuals with normal gait to analyze distinct functionalities of existing polycentric knee. Results: Asymmetry in gait was observed between amputees and normal subjects for all variables concerned ([Formula: see text]). Amputee gait was with significantly lesser velocity, cadence with shorter step and stride length. There was significantly less hip, knee and pelvic motions, however, pelvic obliquity and rotation did not show significant difference from the normal subjects. The vertical component of the ground reaction force differed significantly between prosthetic and intact limb [49.7 (8.5)% and 90.4 (7.4)% body weight] and also from normal subjects [107.5 (2.4)% body weight] during stance ([Formula: see text]). Interpretation and Conclusion: This difference may be attributed to nonproportionate loading of limbs and mechanical adaptations for counteracting deficiencies of prosthetic side. This study will help to explain gait asymmetry in trans-femoral amputees and to identify underlying mechanisms to enhance the quality of the existing design of prosthetic knee through optimizing design parameters and utilizing appropriate materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed Eltokhi ◽  
Barbara Kurpiers ◽  
Claudia Pitzer

AbstractNeuropsychiatric disorders are often associated with motor and coordination abnormalities that have important implications on the etiology, pathophysiology, and management of these disorders. Although the onset of many neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and attention-deficit hyperactivity disorder emerges mainly during infancy and adolescence, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, possibly missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we examined which behavioral tests assessing both motor and coordination functions can be performed in mice at two different adolescent stages. As strain and sex affect mouse behavior, our experiments covered both male and female mice of three inbred wild-type strains, C57BL/6N, DBA/2, and FVB/N. Adolescent mice of both postnatal days (P)22–30 and P32–40 developmental stages were capable of mastering common motor and coordination tests. However, results differed significantly between strains and sexes. Moreover, the 10-day interval between the two tested cohorts uncovered a strong difference in the behavioral results, confirming the significant impact of maturation on behavioral patterns. Interestingly, the results of distinct behavioral experiments were directly correlated with the weight of mice, which may explain the lack of reproducibility of some behavioral results in genetically-modified mice. Our study paves the way for better reproducibility of behavioral tests by addressing the effect of the developmental stage, strain, sex, and weight of mice on achieving the face validity of neuropsychiatric disorder-associated motor dysfunctions.


2004 ◽  
Vol 97 (1) ◽  
pp. 369-376 ◽  
Author(s):  
Christian F. Deschepper ◽  
Jean L. Olson ◽  
Melissa Otis ◽  
Nicole Gallo-Payet

To better understand the contributions of various genetic backgrounds to complex quantitative phenotypes, we have measured several quantitative traits of cardiovascular interest [i.e., systolic blood pressure, weight (corrected by body weight) of several cardiac compartments and adrenals and kidneys, and histological correlates for kidneys and adrenals] in male and female mice from 13 different inbred strains. We selected strains so that each major genealogical group would be represented and to conform to priorities set by the Mouse Phenome Database project. Interstrain comparisons of phenotypes made it possible to identify strains that displayed values that belonged to either the low or the high end of the interstrain variance for quantitative traits, such as systolic blood pressure, body weight, left ventricular weight, and/or adrenocortical structure. For instance, both male and female C3H/HeJ and A/J mice displayed either low systolic blood pressure or low cardiac ventricular mass, respectively, and male C57BL6/J displayed low adrenal weight. Likewise, intersex comparisons made it possible to identify phenotypic values that were sexually dimorphic for some of the same traits. For instance, female AKR/J mice had relatively higher body weight and systolic blood pressure values than their male counterparts, perhaps constituting an animal model of the metabolic X syndrome. These strain- and sex-specific features will be of value both for future genetic and/or developmental studies and for the development of new animal models that will help in the generation of mechanistic hypotheses. All data have been deposited to the Mouse Phenome Database for future integration with the Mouse Genome Database and can be further analyzed and compared with tools available on the site.


2019 ◽  
Author(s):  
Jose Vladimir Sandoval-Sierra ◽  
Alexandra H. B. Helbing ◽  
Evan G. Williams ◽  
David G. Ashbrook ◽  
Suheeta Roy ◽  
...  

SummaryDNA methylation (DNAm) is shaped by genetic and environmental factors and modulated by aging. Here, we examine interrelations between epigenetic aging, body weight (BW), and lifespan in 12 inbred mouse strains from the BXD panel that exhibit over two-fold variation in longevity. Genome-wide DNAm was assayed in 70 liver specimens from mice ranging in age from 6 to 25 months that were maintained on normal chow or high fat diet (HFD). We defined subsets of CpG regions associated with age, BW at young adulthood, and strain-by-diet dependent life expectancy. The age associated differentially methylated CpG regions (age-DMRs) featured distinct genomic characteristics, with DNAm gains over time occurring in sites with high CpG density and low average methylation. CpG regions associated with BW were enriched in introns and generally showed lower methylation in mice with higher BW, and inversely correlated with gene expression such that mRNA was higher in mice with higher BW. Lifespan-associated regions featured no distinct genomic characteristics but were linked to genes involved in lifespan regulation, including the telomerase reverse transcriptase gene, Tert, which showed lower methylation and higher gene expression in long-lived strains. An epigenetic clock defined from the age-DMRs conveyed accelerated aging in mice belonging to strains with shorter lifespans. Both higher BW at young adulthood and HFD were associated with accelerated epigenetic aging. Our results highlight the age-accelerating effect of heavier body weight. Furthermore, the study demonstrates that the measure of epigenetic aging derived from age-DMRs can predict strain and diet-induced differences in lifespan.


2005 ◽  
Vol 16 (10) ◽  
pp. 764-774 ◽  
Author(s):  
Beth Bennett ◽  
Phyllis J. Carosone-Link ◽  
Lu Lu ◽  
Elissa J. Chesler ◽  
Thomas E. Johnson

1998 ◽  
Vol 21 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Melissa G. Kramer ◽  
Ty T. Vaughn ◽  
L. Susan Pletscher ◽  
Kelly King-Ellison ◽  
Emily Adams ◽  
...  

Strain intercross experiments provide a powerful means for mapping genes affecting complex quantitative traits. We report on the genetic variability of the intercross of the Large (LG/J) and Small (SM/J) inbred mouse strains as a guide to gene mapping studies. Ten SM/J males were crossed to 10 LG/J females, after which animals were randomly mated to produce F1, F2, and F3 intercross generations. The 1632 F3 animals from 200 full-sib families were used to estimate heritabilities and genetic correlations of the traits measured. A subset of families was cross-fostered at birth to allow measurement of the importance of post-natal maternal effects. Data was collected on weekly body weight from one to 10 weeks and on organ weights, body weight, reproductive fat pad weight, and tail length at necropsy in the intercross generations. There was no heterosis for age-specific weights or necropsy traits, except that one-week weight was the highest in the F2 generation, indicating heterosis for maternal effect in the F1 mothers. We found moderate to high heritability for most age-specific weights and necropsy traits. Maternal effects were significant for age-specific weights from one to four weeks but disappeared completely at ten-week weight. Maternal effects for necropsy traits were low and not statistically significant. Age-specific weights showed a typical correlation pattern, with correlation declining as the difference in ages increased. Among necropsy traits, reproductive fat pad and body weights were very highly genetically correlated. Most other genetic correlations were low to moderate. The intercross between SM/J and LG/J inbred mouse strains provides a valuable resource for mapping quantitative trait loci for body size, composition, and morphology


Sign in / Sign up

Export Citation Format

Share Document