CLINICAL GAIT ANALYSIS OF SUBJECTS WITH TRANS-FEMORAL AMPUTATION USING POLYCENTRIC FOUR-BAR LINKAGE PROSTHETIC KNEE JOINT

2020 ◽  
Vol 20 (05) ◽  
pp. 2050021
Author(s):  
RAJESH KUMAR MOHANTY ◽  
STHIRPRANJYAN BISWAL ◽  
PABITRA KUMAR SAHOO ◽  
SAKTI PRASAD DAS ◽  
R. C. MOHANTY ◽  
...  

Background: Adequate research is not reported so far to underline the influence of commonly used polycentric knee joints on gait performance of subjects with trans-femoral amputation. Objective: The intent of this investigation is to analyze prosthetic gait of unilateral traumatic trans-femoral amputees with polycentric four-bar linkage knee and compare it with normal subjects for evaluating any asymmetry in gait performance. Methods: Objective three-dimensional gait analysis of 15 subjects [mean (age): 36.4 (10.7) years] were performed in gait lab through force plate and optoelectronic devices to measure temporal-spatial parameters, kinematic and kinetic performances. Gait patterns of amputees were compared with those of 15 individuals with normal gait to analyze distinct functionalities of existing polycentric knee. Results: Asymmetry in gait was observed between amputees and normal subjects for all variables concerned ([Formula: see text]). Amputee gait was with significantly lesser velocity, cadence with shorter step and stride length. There was significantly less hip, knee and pelvic motions, however, pelvic obliquity and rotation did not show significant difference from the normal subjects. The vertical component of the ground reaction force differed significantly between prosthetic and intact limb [49.7 (8.5)% and 90.4 (7.4)% body weight] and also from normal subjects [107.5 (2.4)% body weight] during stance ([Formula: see text]). Interpretation and Conclusion: This difference may be attributed to nonproportionate loading of limbs and mechanical adaptations for counteracting deficiencies of prosthetic side. This study will help to explain gait asymmetry in trans-femoral amputees and to identify underlying mechanisms to enhance the quality of the existing design of prosthetic knee through optimizing design parameters and utilizing appropriate materials.

1999 ◽  
Author(s):  
M. C. Miller ◽  
S. G. Aitken ◽  
A. J. Petrella ◽  
S. F. Conti

Abstract Gait laboratory measurements on unilateral ankle replacement subjects were made at one year after surgery. The basic form of the vertical component of the ground reaction force on both the affected and unaffected sides retained the pattern typical of normal subjects, with an initial peak, an intermediate minimum, and a second peak. Statistical analysis using paired t-tests showed a significant difference only between the values of ground reation force at the second peak (p = 0.01).


2020 ◽  
Author(s):  
Michael McGeehan ◽  
Peter Adamczyk ◽  
Kieran Nichols ◽  
Michael Hahn

INTRODUCTION: Passive energy storage and return (ESR) feet are the current performance standard in lower limb prostheses. A recently developed semi-active variable-stiffness foot (VSF) prosthesis balances the simplicity of a passive ESR device with the adaptability of a powered design. The purpose of this study was to model and simulate the ESR properties of the VSF prosthesis. METHODS: The ESR properties of the VSF were modeled as a lumped parameter overhung beam. The overhung length is variable, allowing the model to exhibit variable ESR stiffness. Foot-ground contact was modeled using sphere-to-plane contact models. Contact parameters were optimized to represent the geometry and dynamics of the VSF and its foam base. Static compression tests and gait were simulated. Simulation outcomes were compared to corresponding experimental data. RESULTS: Stiffness of the model matched that of the physical VSF (R2: 0.98, RMSE: 1.37 N/mm). Model-predicted resultant ground reaction force (GRFR) matched well under optimized parameter conditions (R2: 0.98, RMSE: 5.3% body weight,) and unoptimized parameter conditions (R2: 0.90, mean RMSE: 13% body weight). Anterior-posterior center of pressure matched well with R2 > 0.94 and RMSE < 9.5% foot length in all conditions. CONCLUSIONS: The ESR properties of the VSF were accurately simulated under benchtop testing and dynamic gait conditions. These methods may be useful for predicting GRFR arising from gait with novel prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.


2007 ◽  
Vol 07 (03) ◽  
pp. 265-274 ◽  
Author(s):  
H. N. SHASMIN ◽  
N. A. ABU OSMAN ◽  
R. RAZALI ◽  
J. USMAN ◽  
W. A. B. WAN ABAS

Backpack carrying is a considerable daily "occupational" load among schoolchildren. Most of the research on children's backpacks have focused on gait pattern and trunk forward lean; only a few researches have investigated the impact of backpack carrying on children using the measurements of static posture and gait kinetics. This study investigated the changes in ground reaction force (GRF) and trunk inclination among primary students when carrying heavy backpacks. A randomized controlled experimental study was conducted on seven boys aged between 9 and 11 years old with a similar body mass index. Observations were done when the boys were carrying school bags of 0% (as control), 10%, 15%, and 20% of their own body weight while walking normally. Data acquisition was carried out using force platforms and a 3D motion analysis system. A significant difference in GRF at a load of 20% of body weight was found: the vertical GRF increased almost three times when loads increased up to 20% of body weight compared to 10% of body weight. The anterior–posterior GRFs were asymmetrical when loads were increased. When carrying a load of 15% of body weight, all of the seven subjects adopted a compensatory trunk inclination. The emphasis on GRF and trunk inclination suggests that the safest load applied does not exceed 15% of body weight.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Michael A. McGeehan ◽  
Peter G. Adamczyk ◽  
Kieran M. Nichols ◽  
Michael E. Hahn

Abstract Passive energy storage and return (ESR) feet are current performance standard in lower limb prostheses. A recently developed semi-active variable-stiffness foot (VSF) prosthesis balances the simplicity of a passive ESR device with the adaptability of a powered design. The purpose of this study was to model and simulate the ESR properties of the VSF prosthesis. The ESR properties of the VSF were modeled as a lumped parameter overhung beam. The overhung length is variable, allowing the model to exhibit variable ESR stiffness. Foot-ground contact was modeled using sphere-to-plane contact models. Contact parameters were optimized to represent the geometry and dynamics of the VSF and its foam base. Static compression tests and gait were simulated. Simulation outcomes were compared to corresponding experimental data. Stiffness of the model matched that of the physical VSF (R2: 0.98, root-mean-squared error (RMSE): 1.37 N/mm). Model-predicted resultant ground reaction force (GRFR) matched well under optimized parameter conditions (R2: 0.98, RMSE: 5.3% body weight,) and unoptimized parameter conditions (R2: 0.90, mean RMSE: 13% body weight). Anterior–posterior center of pressure matched well with R2 > 0.94 and RMSE < 9.5% foot length in all conditions. The ESR properties of the VSF were accurately simulated under benchtop testing and dynamic gait conditions. These methods may be useful for predicting GRFR arising from gait with novel prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.


2013 ◽  
Vol 694-697 ◽  
pp. 3063-3066 ◽  
Author(s):  
Guo Qiang Li ◽  
Hao Chen ◽  
Jiang Guo Zhang

The purpose of this study was to investigate plantar pressure of male adults under different sing-shoulder weight during walking. Experiments were conducted at single-shoulder load styles in four different weight conditions by three-dimension force platform system. Four weight conditions were 5%, 10%, 15% and 20% of body weight. Seven characteristic parameters were selected and analyzed by statistical methods. The results showed a significant difference for the male subjects at 13% of body weight loads comparing with natural walk. Ground reaction force was employed to analyze human movement. This study was designed to obtain the data of foot pressure, which was important to the balance of control of biped robot.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Pitzer ◽  
Barbara Kurpiers ◽  
Ahmed Eltokhi

AbstractThe automatization of behavioral tests assessing motor activity in rodent models is important for providing robust and reproducible results and evaluating new therapeutics. The CatWalk system is an observer-independent, automated and computerized technique for the assessment of gait performance in rodents. This method has previously been used in adult rodent models of CNS-based movement disorders such as Parkinson’s and Huntington’s diseases. As motor and gait abnormalities in neuropsychiatric disorders are observed during infancy and adolescence, it became important to validate the CatWalk XT in the gait analysis of adolescent mice and unravel factors that may cause variations in gait performance. Three adolescent wild-type inbred mouse strains, C57BL/6N, DBA/2 and FVB/N, were tested using the CatWalk XT (Version 10.6) for suitable detection settings to characterize several gait parameters at P32 and P42. The same detection settings being suitable for C57BL/6N and DBA/2 mice allowed a direct comparison between the two strains. On the other hand, due to their increased body weight and size, FVB/N mice required different detection settings. The CatWalk XT reliably measured the temporal, spatial, and interlimb coordination parameters in the investigated strains during adolescence. Additionally, significant effects of sex, development, speed and body weight within each strain confirmed the sensitivity of motor and gait functions to these factors. The CatWalk gait analysis of rodents during adolescence, taking the effect of age, strain, sex, speed and body weight into consideration, will decrease intra-laboratory discrepancies and increase the face validity of rodent models of neuropsychiatric disorders.


2021 ◽  
pp. 373-390
Author(s):  
Hyung Gyu Jeon ◽  
Sae Yong Lee ◽  
Sung Eun Park ◽  
Sunghe Ha

This review aimed to investigate characteristics of muscle activation and ground reaction force (GRF) patterns in patients with ankle instability (AI). Relevant studies were sourced from PubMed, CINAHL, SPORTDiscus, and Web of Science through December 2019 for case-control study in any laboratory setting. Inclusion criteria for study selection were (1) subjects with chronic, functional, or mechanical instability or recurrent ankle sprains; (2) primary outcomes consisted of muscle activation of the lower extremity and GRF during landing; and (3) peer-reviewed articles with full text available, including mean, standard deviation, and sample size, to enable data reanalysis. We evaluated four variables related to landing task: (1) muscle activation of the lower extremity before landing, (2) muscle activation of the lower extremity during landing, (3) magnitude of GRF, and (4) time to peak GRF. The effect size using standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for these variables to make comparisons across studies. Patients with AI had a lower activation of peroneal muscles before landing (SMD = -0.63, p < 0.001, CI = -0.95 to -0.31), greater peak vertical GRF (SMD = 0.21, p = 0.03, CI = 0.01 to 0.40), and shorter time to peak vertical GRF (SMD = -0.51, p < 0.001, CI = -0.72 to -0.29) than those of normal subjects during landing. There was no significant difference in other muscle activation and GRF components between the patients with AI and normal subjects (p > 0.05). Altered muscle activation and GRF before and during landing in AI cases may contribute to both recurrent ankle and ACL injuries and degenerative change of articular.


1992 ◽  
Vol 05 (02) ◽  
pp. 44-50 ◽  
Author(s):  
D. A. Hulse ◽  
H. A. Hogan ◽  
Margaret Slater ◽  
M. T. Longnecker ◽  
Susan Yanoff

SummaryThe purpose of this study was: to quantitate the peak vertical ground reaction force acting on the forelimbs of dogs as they landed after jumping an obstacle; to compare that force at three heights; and to evaluate factors that may affect vertical ground reaction force. Thirteen military working dogs were studied. A strain gauge force plate was used to measure force. Three measurements were recorded for each dog at each height. The means of the medians of the three forces for each dog at each height were compared using a repeated measures analysis of variance. Mean force at 63 cm was 986.9 ± 221.5 N, mean force at 79 cm was 1175.0 ±227.4 N, and mean force at 94 cm was 1366.1± 268.5 N. There was a significant difference in mean force at the three jump heights (p = 0.0002). The significance was unchanged when force was normalized for body weight. Statistical models were used to evaluate the effect of other independent variables. Factors that were found to effect force were body weight, breed, and sex of the dog. Further studies are needed to determine the clinical significance of these findings.Vertical ground reaction force was measured in thirteen dogs landing on a force plate after jumping an obstacle. Three readings were taken for each dog at each of three heights, and the mean vertical ground reaction force was compared. Force readings were significantly different at each height, increasing as height increased. Factors that were found to effect vertical ground reaction force were body weight, breed, and sex.


2015 ◽  
Vol 15 (04) ◽  
pp. 1550049 ◽  
Author(s):  
FATOMEH KHIRI ◽  
MOHAMMAD TAGHI KARIMI ◽  
FRANCIS FATOYE ◽  
NIMA JAMSHIDI

Transfemoral amputation (TFA) results in reduced sensation, altered body image and loss of function. Energy expenditure is known to be significantly higher in individuals with TFA compared with their healthy counterparts. Kinetic and kinematics characteristics of individuals with TFA have been evaluated; however, stability during quiet standing has not been examined. This study evaluated stability, gait performance and energy consumption in individuals with TFA during standing and walking. A total of subjects (5 healthy and 5 with TFA) participated in this study. The motion of lower limb joints and the force applied on the leg were evaluated using a motion analysis system, Qualysis. Stability during standing was examined using a force plate and energy consumption during walking was evaluated based on physiological cost index (PCI). Group comparisons were made using the independent t-test. There was no significant difference in stability between subjects with TFA and normal subjects during standing. However, walking speed in subjects with TFA decreased significantly compared to normal subjects (p = 0.014). PCI of subjects with TFA was 0.525 ± 0.13 compared to 0.298 ± 0.059 beats/m in normal subjects (p < 0.05). It seems that stability in subjects with TFA was similar to their healthy counterparts. However, energy consumption was higher in the TFA group than in normal subjects, which may be due to slow walking speed. Clinicians are to be aware of these findings as they may be useful for effective management of the patients with TFA.


1985 ◽  
Vol 16 (4) ◽  
pp. 260-266 ◽  
Author(s):  
Lee Ann Laraway

The purpose of this study was to determine whether there is a statistically significant difference between the auditory selective attention abilities of normal and cerebral-palsied individuals. Twenty-three cerebral-palsied and 23 normal subjects between the ages of 5 and 21 were asked to repeat a series of 30 items consisting of from 2 to 4 digits in the presence of intermittent white noise. Results of the study indicate that cerebral-palsied individuals perform significantly poorer than normal individuals when the stimulus is accompanied by noise. Noise was not a significant factor in the performance of the normal subjects regardless of age.


Sign in / Sign up

Export Citation Format

Share Document