scholarly journals Highly efficient patterning technique for silver nanowire electrodes by electrospray deposition and its application to self-powered triboelectric tactile sensor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Jae Hee Oh ◽  
Dongwhi Choi ◽  
Sang Min Park

AbstractA patterned transparent electrode is a crucial component of state-of-the-art wearable devices and optoelectronic devices. However, most of the patterning methods using silver nanowires (AgNWs), which is one of the outstanding candidate materials for the transparent electrode, wasted a large amount of unused AgNWs during the patterning process. Here, we report a highly efficient patterning of AgNWs using electrospray deposition with grounded electrolyte solution (EDGE). During electrospray deposition, a patterned electrolyte solution collector attracted AgNWs by strong electrostatic attraction and selectively deposited them only on the patterned collector, minimizing AgNW deposited elsewhere. The enhanced patterning efficiency was verified through a comparison between the EDGE and conventional process by numerical simulation and experimental validation. As a result, despite the same electrospray deposition conditions for both cases except for the existence of the electrolyte solution collector, the coverage ratio of AgNWs fabricated by the EDGE process was at least six times higher than that of AgNWs produced by the conventional process. Furthermore, the EDGE process provided high design flexibility in terms of not only the material of the substrate, including a polymer and a ceramic but also the shape of the substrate, including a 2D flat and 3D curved surface. As an application of the EDGE process, a self-powered touch sensor exploiting the triboelectric effect was demonstrated. Thus, the EDGE process would be utilized in further application in wearable or implantable devices in the field of biomedicine, intelligent robots, and human–machine interface.

RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64428-64433 ◽  
Author(s):  
Youn-Soo Kim ◽  
Eun-Jong Lee ◽  
Jun-Taek Lee ◽  
Do-Kyung Hwang ◽  
Won-Kook Choi ◽  
...  

We have developed the transparent conductive electrode hybrid-gel films based on PEDOT:PSS and thin silver nanowires with diameters of 20 nm. These hybrid-gel films exhibited excellent opto-electrical performance and good mechanical flexibility.


2018 ◽  
Vol 55 ◽  
pp. 82-90
Author(s):  
Feng Duan ◽  
Wei Jia Yang ◽  
Xin He ◽  
Jia Yi Jiang ◽  
Wan Yu Zhu ◽  
...  

In this work, we fabricated a flexible silver nanowires (Ag NWs)/graphene transparent conducting film on polyethylene terephthalate (PET) substrate, which was applied in an electrochromic device. The graphene layer was coated on the surface of the Ag NW film utilizing the electrostatic adsorption in order to improve the stability of the metallic nanowire layer and the performance of the electrochromic device. The Ag NWs/graphene composite film exhibited an optical transmittance of 82.5% at 550 nm and a sheet resistance of 57.5 Ω/sq. With the concentration of the adsorbed graphene increased, the transmittance and conductivity of the composite film both decreased. Furthermore, the lifetime of the electrochromic devices based on the tungsten oxide (WO3) thin film and the Ag NW/graphene composite electrodes was greatly extended, compared to that utilizing the pristine Ag NW electrodes. The results indicate that the introduction of the graphene layer could protect the Ag NW film from corrosion of the electrolyte layer, and greatly improve the lifetime and cycle numbers of the electrochromic device. Key words: silver nanowire; graphene; transparent electrode; electrochromic devices


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
June Sik Hwang ◽  
Jong-Eun Park ◽  
Gun Woo Kim ◽  
Hyeono Nam ◽  
Sangseok Yu ◽  
...  

AbstractAs silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2219
Author(s):  
Xiaopeng Li ◽  
Jiayue Zhou ◽  
Dejun Yan ◽  
Yong Peng ◽  
Yong Wang ◽  
...  

In this paper, silver nanowires (AgNWs) with a diameter of 40 nm and a length of 45 μm were dispersed into an ethanol solution to prepare AgNW solutions with concentrations of 1, 2, and 3 mg/mL, respectively. The AgNW solutions were then deposited on a glass substrate using spin-coating at 1000, 2000, and 3000 rpm for 45 s, respectively, to prepare transparent electrodes. The results showed that the distribution of AgNWs on the substrate increased in density with the increase in the AgNW solution concentration and the decrease in spin speed. The effect of concentration on the distribution of AgNWs was greater than that of the spin speed. The transmittance of each electrode was between 84.19% and 88.12% at 550 nm, the average sheet resistance was between 20.09 and 358.11 Ω/sq, the highest figure of merit (FoM) was 104.42, and the lowest haze value was 1.48%. The electrode prepared at 1000 rpm with a concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL were very similar in terms of the average sheet resistance, transmittance at 550 nm, FoM, and haze value; thus, these two electrodes could be considered equivalent. The haze value of the electrode was positively correlated with the spin speed at low concentration, but that relationship became inverse as the concentration rose. For the AgNWs used in this experiment with an aspect ratio of 1125, the concentration of the AgNW solution should reach at least 2 mg/mL to ensure that the FoM of the electrode is greater than 35.


Soft Matter ◽  
2017 ◽  
Vol 13 (37) ◽  
pp. 6390-6395 ◽  
Author(s):  
Ye Rim Lee ◽  
Hyungho Kwon ◽  
Do Hoon Lee ◽  
Byung Yang Lee

Electrodes consisting of silver nanowires and carbon nanotubes enable a dielectric elastomer actuator to become highly stretchable and optically transparent.


Sign in / Sign up

Export Citation Format

Share Document