scholarly journals Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta J. Fiołka ◽  
Nozomu Takeuchi ◽  
Weronika Sofińska-Chmiel ◽  
Sylwia Wójcik-Mieszawska ◽  
Tristram Irvine-Fynn ◽  
...  

AbstractThe results show the morphological analyses and spectroscopic studies of snow and glacier algae and their parasitic fungi in Svalbard (High Arctic). Fixed algal cells of two species, Sanguina nivaloides and Ancylonema nordenskioeldii, were imaged using light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Fluorescence microscopy using Calcofluor white stain supported the observations of parasitic fungi on the algal cells. Images in brightfield microscopy showed chytrid-like fungi penetrating the cells of both algal species. Parasites were found to colonize the cells of A. nordenskioeldii and hypnozygotes of S. nivaloides, while no fungi infected the cyst stages of S. nivaloides. The autofluorescence analysis revealed the ability of S. nivaloides to glow when excited with different wavelengths, while A. nordenskioeldii did not fluoresce. The hypnozygotes of S. nivaloides emitted brighter fluorescence than the cysts, and the most intense luminosity was observed in the UV range. The Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS) spectroscopic analysis showed differences in the chemical composition between samples collected from three different sites. Samples dominated by cyst cells were characterized by the presence of an abundant polysaccharide envelope.

2018 ◽  
Vol 5 (2) ◽  
pp. 171179 ◽  
Author(s):  
Bramaramba Gnapareddy ◽  
Sreekantha Reddy Dugasani ◽  
Junyoung Son ◽  
Sung Ha Park

DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF] C , approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF] C . [RF] C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF] C followed by an increase above [RF] C . By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.


2008 ◽  
Vol 8 (8) ◽  
pp. 4081-4085 ◽  
Author(s):  
Y. Batra ◽  
D. Kabiraj ◽  
D. Kanjilal

Germanium (Ge) nanoparticles have attracted a lot of attention due to their excellent optical properties. In this paper, we report on the formation of Ge nanoparticles embedded in GeO2 matrix prepared by electron beam evaporation and subsequent annealing. Transmission electron microscopy (TEM) studies clearly indicate the formation of Ge nanocrystals in the films annealed at 500 °C. Fourier transform infrared (FTIR) spectroscopic studies are carried out to verify the evolution of the structure after annealingat each stage. Micro-Raman analysis also confirms the formation of Ge nanoparticles in the annealed films. Development of Ge nanoparticles is also established by photoluminescence (PL) analysis. Surface morphology study is carried out by atomic force microscopy (AFM). It shows the evolution of granular structure of the films with increasing annealing temperature.


2007 ◽  
Vol 555 ◽  
pp. 411-416
Author(s):  
C. Gruenberger ◽  
R. Ritter ◽  
F. Aumayr ◽  
Herbert Stachelberger ◽  
Ille C. Gebeshuber

Matter produced by organisms is remarkable. Evolutionary optimized properties, e.g. regarding hydrodynamic, aerodynamic, wetting and adhesive behavior, can already be found in the “simplest” forms of organisms. Euglena gracilis, a single-celled algal species, performs tasks as diverse as sensing the environment and reacting to it, converting and storing energy and metabolizing nutrients, living as a plant or an animal, depending on the environmental constraints. We developed a preparation method for atomic force microscopy investigation of dried whole Euglena cells in air and obtained data on whole cells as well as cell parts. Our studies corroborate TEM, SEM and optical microscopy results. Furthermore, we found new features on the pellicle, and set the ground for AFM force spectroscopy and viscoelastic studies on the nanoscale.


RSC Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 2786-2794 ◽  
Author(s):  
Luca Quaroni ◽  
Katarzyna Pogoda ◽  
Joanna Wiltowska-Zuber ◽  
Wojciech M. Kwiatek

Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7848
Author(s):  
Magdalena Janik ◽  
Ewelina Jamróz ◽  
Joanna Tkaczewska ◽  
Lesław Juszczak ◽  
Piotr Kulawik ◽  
...  

The aim of the study was to develop and characterise an innovative three-component biopolymer film based on chitosan (CHIT), furcellaran (FUR) and a gelatin hydrolysate from carp skins (Cyprinus carpio) (HGEL). The structure and morphology were characterised using the Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The FT-IR test showed no changes in the matrix after the addition of HGEL, which indicates that the film components were compatible. Based on the obtained AFM results, it was found that the addition of HGEL caused the formation of grooves and cracks on the surface of the film (reduction by ~21%). The addition of HGEL improved the antioxidant activity of the film (improvement by up to 2.318% and 444% of DPPH and FRAP power, respectively). Due to their properties, the tested films were used as active materials in the preservation of American blueberries. In the active films, the blueberries lost mass quickly compared to the synthetic film and were characterised by higher phenol content. The results obtained in this study create the opportunity to use the designed CHIT–FUR films in developing biodegradable packaging materials for food protection, but it is necessary to test their effectiveness on other food products.


2019 ◽  
Vol 33 (7) ◽  
pp. 6088-6097 ◽  
Author(s):  
Yunlong Zhang ◽  
Fabian Schulz ◽  
B. McKay Rytting ◽  
Clifford C. Walters ◽  
Katharina Kaiser ◽  
...  

Author(s):  
Victor Ibarra ◽  
Demetrio Mendoza ◽  
Alma Sanchez ◽  
Rosa Vazquez ◽  
Karina Aleman ◽  
...  

Graphene oxide was synthesized by a one-step environmentally friendly mechanochemistry process directly from graphite and characterized by Raman, FT-IR and UV/vis spectroscopies, Atomic Force Microscopy, X-ray Diffraction, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy and Thermogravimetric Analysis. Spectroscopic analysis shows that the functional groups and oxygen content of the synthesized material are comparable with those of graphene oxide synthesized by other previously reported methods (Hummers). Thermogravimetric analysis reveals thermal stability up to 400 °C.


Sign in / Sign up

Export Citation Format

Share Document