scholarly journals S-1-Propenylcysteine promotes IL-10-induced M2c macrophage polarization through prolonged activation of IL-10R/STAT3 signaling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satomi Miki ◽  
Jun-ichiro Suzuki ◽  
Miyuki Takashima ◽  
Mari Ishida ◽  
Hiroki Kokubo ◽  
...  

AbstractAtherosclerosis is a chronic inflammatory disease that may lead to the development of serious cardiovascular diseases. Aged garlic extract (AGE) has been reported to ameliorate atherosclerosis, although its mode of action remains unclear. We found that AGE increased the mRNA or protein levels of arginase1 (Arg1), interleukin-10 (IL-10), CD206 and hypoxia-inducible factor 2α (HIF2α) and decreased that of CD68, HIF1α and inducible nitric oxide synthase in the aorta and spleen of apolipoprotein E knockout mice. We also found that S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, increased the level of IL-10-induced Arg1 mRNA and the extent of M2c-like macrophage polarization in vitro. In addition, S1PC increased the population of M2c-like macrophages, resulting in suppressed the population of M1-like macrophages and decreased lipopolysaccharide-induced production of pro-inflammatory cytokines. These effects were accompanied by prolonged phosphorylation of the IL-10 receptor α (IL-10Rα) and signal transducer and activator of transcription 3 (STAT3) that inhibited the interaction between IL-10Rα and Src homology-2-containing inositol 5’-phosphatase 1 (SHIP1). In addition, administration of S1PC elevated the M2c/M1 macrophage ratio in senescence-accelerated mice. These findings suggest that S1PC may help improve atherosclerosis due to its anti-inflammatory effect to promote IL-10-induced M2c macrophage polarization.

2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Vijayalakshmi Nandakumar ◽  
Deanne Hebrink ◽  
Paige Jenson ◽  
Theodore Kottom ◽  
Andrew H. Limper

ABSTRACT We explored differential polarization of macrophages during infection using a rat model of Pneumocystis pneumonia. We observed enhanced pulmonary M1 macrophage polarization in immunosuppressed (IS) hosts, but an M2 predominant response in immunocompetent (IC) hosts following Pneumocystis carinii challenge. Increased inflammation and inducible nitric oxide synthase (iNOS) levels characterized the M1 response. However, macrophage ability to produce nitric oxide was defective. In contrast, the lungs of IC animals revealed a prominent M2 gene signature, and these macrophages effectively elicited an oxidative burst associated with clearance of Pneumocystis. In addition, during P. carinii infection the expression of Dectin-1, a critical receptor for recognition and clearance of P. carinii, was upregulated in macrophages of IC animals but suppressed in IS animals. In the absence of an appropriate cytokine milieu for M2 differentiation, Pneumocystis induced an M1 response both in vitro and in vivo. The M1 response induced by P. carinii was plastic in nature and reversible with appropriate cytokine stimuli. Finally, we tested whether macrophage polarization can be modulated in vivo and used to help manage the pathogenesis of Pneumocystis pneumonia by adoptive transfer. Treatment with both M1 and M2 cells significantly improved survival of P. carinii-infected IS hosts. However, M2 treatment provided the best outcomes with efficient clearance of P. carinii and reduced inflammation.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2894
Author(s):  
Christian R. Pangilinan ◽  
Li-Hsien Wu ◽  
Che-Hsin Lee

Targeting metastasis is a vital strategy to improve the clinical outcome of cancer patients, specifically in cases with high-grade malignancies. Here, we employed a Salmonella-based treatment to address metastasis. The potential of Salmonella as an anticancer agent has been extensively studied; however, the mechanism through which it affects metastasis remains unclear. This study found that the epithelial-to-mesenchymal transition (EMT) inducer SNAI1 was markedly reduced in Salmonella-treated melanoma cells, as revealed by immunoblotting. Furthermore, wound healing and transwell assays showed a reduced in vitro cell migration following Salmonella treatment. Transfection experiments confirmed that Salmonella acted against metastasis by suppressing protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling, which in turn inhibited SNAI1 expression. Since it is known that metastasis is also influenced by inflammation, we partly characterized the immune infiltrates in melanoma as affected by Salmonella treatment. We found through tumor-macrophage co-culture that Salmonella treatment increased high mobility group box 1 (HMGB1) secretion in tumors to coax the polarization of macrophages in favor of an M1-like phenotype, as shown by increased inducible nitric oxide synthase (iNOS) expression and Interleukin 1 Beta (IL-1β) secretion. Data from our animal study corroborated the in vitro findings, wherein the Salmonella-treated group obtained the lowest lung metastases, longer survival, and increased iNOS-expressing immune infiltrates.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Yu ◽  
Peiwei Chai ◽  
Minyue Xie ◽  
Shengfang Ge ◽  
Jing Ruan ◽  
...  

Abstract Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A900-A900
Author(s):  
Ronghua Zhang ◽  
Tienan Wang ◽  
Qing Lin

BackgroundMacrophage is an important component in tumor microenvironment (TME) and plays multiple roles in tumor initiation, progression and metastases. In response to various stimuli within TME, macrophage exhibits high level of functional heterogeneity. There are two distinct groups of macrophages: M1 macrophage exhibits pro-inflammatory phenotype with high levels of TNF-a, IL-6, and IL-1ß, while M2 macrophage displays immune suppressive phenotype with high levels of anti-inflammatory cytokines such as IL-10 and TGF-ß. In response to the M2 cytokines, myeloid cells within the TME further acquire higher expression of PD-L1 and thus inactivate T cells. M2 cytokines can also directly inhibit T cell activation. As a result, re-polarizing M2 macrophages becomes a key concept for cancer immunotherapy. The NLRP3 inflammasome is acquired by macrophages to fight against endogenous danger signals. Macrophage NLRP3 activation has been observed in several tumor models, but the function of NLRP3 on macrophage polarity remains controversial. Inflammasome activation with IL-1ß/IL-18 secretion was reported to promote M1 polarization. However, NLRP3 activation was also reported to promote M2 polarity through up-regulation of IL4 in asthma modelMethodsHere, we have established an in vitro human macrophage NLRP3 activation system (figure 1), coupled with M2 macrophage polarization assay, to dissect the role of NLRP3 in macrophage phenotype.ResultsOur results indicate that NLRP3 activation restrained M2 phenotype and further enhanced T cell activation in an M2/T cell co-culture system (figure 2).Abstract 847 Figure 1Inflammasome activation polarize M2 macrophage intUse LPS/ATP to stimulate NLRP3 in M2 macrophage and demonstrate NLRP3 activation could reduce CD163 and increase CD86Abstract 847 Figure 2Inflammasome in M2 rescue T cell activationestablish M2/T co-culture system in vitro to demonstrate M2 could suppress T activation while Inflammatory M2 could partial rescue the suppressive phenotypeConclusionsInflammasome could be the potential target for cancer by modulating T cell activation through macrophage polarization regulation


2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2020 ◽  
Author(s):  
Jiansen Lu ◽  
Hongbo Zhang ◽  
Jianying Pan ◽  
Zhiqiang Hu ◽  
Liangliang Liu ◽  
...  

Abstract Synovial macrophage polarization and interactions between chondrocytes and macrophages are essential for osteoarthritis (OA) development. The present study determined the role and regulatory mechanisms of fargesin, one of the main components of Magnolia fargesii, in macrophage reprogramming and crosstalk across cartilage and synovium. 10-week-old male C57BL/6 mice were randomly assigned to sham-operated, collagenase-induced OA (CIOA)-operated, or CIOA-operated with intraarticular fargesin treatment groups. Fargesin attenuated articular cartilage degeneration and synovitis, resulting in substantially lower Osteoarthritis Research Society International (OARSI) and synovitis scores. In particular, significantly increased M2 polarization and decreased M1 polarization in synovial macrophages were found in fargesin-treated CIOA mice compared to controls. This was accompanied by down-regulation of IL-6 and IL-1β and upregulation of IL-10 in serum. Although conditioned medium (CM) from the M1 macrophage treated with fargesin reduced the expression of matrix metalloproteinase-13, RUNX2, and type X collagen X in OA cartilage, it had no direct effect on chondrocyte metabolism in an in vitro study. Moreover, fargesin exerted protective effects by suppressing p38/ERK MAPK and p65/NF-κB signaling. This study showed that fargesin switched the polarized phenotypes of macrophages from M1 to M2 subtypes and prevented cartilage degeneration partially by down-regulating p38/ERK MAPK and p65/NF-κB signaling. Targeting macrophage reprogramming or blocking the crosstalk between macrophages and chondrocytes in early OA may be an effective preventive strategy.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Amanda I Pacheco ◽  
Anthony V Washington ◽  
Marieli Gonzalez

Atherosclerosis, the hardening and narrowing of the arteries, is a chronic inflammatory disease driven by a crosstalk of signaling molecules between circulating immune cells and the vessel wall. In the classic view of this cardiovascular disease, hyperlipidemia initiates an inflammatory cascade that promotes macrophage infiltration into the vessel wall leading to a feedback mechanism which exacerbates lesion growth and ultimately, atherothrombosis. Our laboratory has characterized a novel atherosclerotic mice model, in which deletion of the platelet receptor Triggering Receptor Expressed on Myeloid Cells (TREM)-Like Transcript-1 (TLT-1) on a apolipoprotein E ( apoe -/- /treml1 -/- ) background dampens early macrophage infiltration into the vessel wall. This leads to decreased lesion size, instability, and calcification of atherosclerotic lesions. We have demonstrated that one of the mechanisms for dampened lesion progression is decreased platelet activation and we hypothesize that the macrophage infiltration differences may also be due to fundamental differences in macrophage phenotypic functions. In order to further define the mechanism by which TLT-1 modulates macrophage infiltration, we analyzed macrophage function in vitro . Analysis of bone marrow-derived macrophages (BMDM) from apoe -/- /treml1 -/- and apoe -/- /treml1 -/+ mice revealed no significant differences in the phagocytic function of long chain fatty acids. However, analysis of basal levels of monocyte chemoattractant protein-1 (MCP1), a key chemokine regulating monocyte infiltration, were significantly decreased in the apoe -/- /treml1 -/- BMDM supernatants. Accordingly, levels of Interleukin 6 (IL6) and Interleukin 10 (IL10) were significantly decreased in the apoe -/- /treml1 -/- BMDM supernatants after two hours of lipopolysaccharide (LPS) stimulation (p<0.05; n=5-8). These findings define an underlying difference in the BMDM secretory phenotype of the apoe -/- /treml1 -/- mice. However, it also opens the possibility of treml1 expression in macrophages, which may account for these differences. We will now investigate if an alternate isoform of treml1 is expressed in macrophages or at some period of their differentiation.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


Sign in / Sign up

Export Citation Format

Share Document