scholarly journals Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John W. Kennedy ◽  
P. Monica Tsimbouri ◽  
Paul Campsie ◽  
Shatakshi Sood ◽  
Peter G. Childs ◽  
...  

AbstractModels of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.

2022 ◽  
Vol 12 (2) ◽  
pp. 405-410
Author(s):  
Lian Tan ◽  
Xiongxiong Wang ◽  
Danqi Chen ◽  
Li Xu ◽  
Yudong Xu ◽  
...  

Our study investigates whether miR-265 regulates the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into alveolar type II epithelial cells (ATII) through TGF-β1 and promotes lung injury repair in rats with sepsis, thereby inhibiting sepsis progression. 25 patients with sepsis admitted to the Respiratory and Critical Care Medicine Department of the hospital and 17 normal controls were included. TGF-β1 level was measured by ELISA. miR-265 level was measured by qRT-PCR and AT II-related genes and proteins expression was analyzed by western blot and qRT-PCR. miR-265 expression was significantly higher in sepsis patients than normal group. Progenitor BMSCs were long and shuttle-shaped after 1 and 3 days of growth. Cultured MSCs had low expression of the negative antigen CD34 (4.32%) and high expression of the positive antigen CD44 (99.87%). TGF-β1 level was significantly increased with longer induction time, while miR-265 expression was significantly decreased in cell culture medium. miR-265 interference significantly decreased TGF-β1 expression. In conclusion, miR-265 inhibits BMSC differentiation to AT II via regulation of TGF-β1, thereby inhibiting sepsis progression.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 582 ◽  
Author(s):  
Yeri Alice Rim ◽  
Yoojun Nam ◽  
Narae Park ◽  
Hyerin Jung ◽  
Kijun Lee ◽  
...  

Human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently, chondrogenesis using human pluripotent stem cells (hiPSCs) is accomplished using human recombinant growth factors. Here, we differentiate hiPSCs into chondrogenic pellets using minicircle vectors. Minicircles are a non-viral gene delivery system that can produce growth factors without integration into the host genome. We generated minicircle vectors containing bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 3 (TGFβ3) and delivered them to mesenchymal stem cell-like, hiPSC-derived outgrowth (OG) cells. Cell pellets generated using minicircle-transfected OG cells successfully differentiated into the chondrogenic lineage. The implanted minicircle-based chondrogenic pellets recovered the osteochondral defects in rat models. This work is a proof-of-concept study that describes the potential application of minicircle vectors in cartilage regeneration using hiPSCs.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4151-4156 ◽  
Author(s):  
S Jiang ◽  
JD Levine ◽  
Y Fu ◽  
B Deng ◽  
R London ◽  
...  

Primary human bone marrow megakaryocytes were studied for their ability to express and release cytokines potentially relevant to their proliferation and/or differentiation. The purity of the bone marrow megakaryocytes was assessed by morphologic and immunocytochemical criteria. Unstimulated marrow megakaryocytes constitutively expressed genes for interleukin-1 beta (IL-1 beta), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha), by the polymerase chain reaction (PCR) and Northern blot analysis. At the protein level, megakaryocytes secreted significant amounts of IL-1 beta (53.6 +/- 3.6 pg/mL), IL-6 (57.6 +/- 15.6 pg/mL), and GM-CSF (24 +/- 4 pg/mL) but not TNF-alpha. Exposure of human marrow megakaryocytes to IL-1 beta increased the levels of IL-6 (87.3 +/- 2.3 pg/mL) detected in the culture supernatants. Transforming growth factor- beta was also able to stimulate IL-6, IL-1 beta, and GM-CSF secretion, but was less potent than stimulation with phorbol-12-myristate-13- acetate (PMA). The secreted cytokines acted additively to maintain and increase the number of colony-forming unit-megakaryocytes colonies (approximately 35%). These studies demonstrate the production of multiple cytokines by isolated human bone marrow megakaryocytes constitutively or stimulated in vitro. The capacity of human megakaryocytes to synthesize several cytokines known to modulate hematopoietic cells supports the concept that there may be an autocrine mechanism operative in the regulation of megakaryocytopoiesis.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 596-602 ◽  
Author(s):  
JR Keller ◽  
IK Mcniece ◽  
KT Sill ◽  
LR Ellingsworth ◽  
PJ Quesenberry ◽  
...  

Abstract We previously reported that transforming growth factor beta (TGF-beta) selectively inhibits colony-stimulating factor-driven hematopoietic progenitor cell growth. We report here that TGF-beta 1 can act directly on hematopoietic progenitors to inhibit the growth of the most primitive progenitors measurable in vitro. Highly enriched populations of hematopoietic progenitor cells were obtained by isolating lineage negative (Lin-), Thy-1-positive (Thy-1+) fresh bone marrow cells, or by isolating cells from interleukin-3 (IL-3) supplemented bone marrow cultures expressing Thy-1 antigen with the fluorescent activated cell sorter. TGF-beta 1 inhibited IL-3-induced Thy-1 expression on Thy-1- negative (Thy-1-) bone marrow cells in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. In addition, TGF-beta 1 inhibited the formation of multipotent and mixed colonies by isolated Thy-1+ cells, while single lineage granulocyte and macrophage colonies were not affected. The growth of Thy-1+ Lin- cells incubated as single cells in Terasaki plates in medium supplemented with IL-3 were inhibited by TGF-beta, demonstrating a direct inhibitory effect. Hematopoietic stem cells, which have a high proliferative potential (HPP) when responding to combinations of growth factors in vitro, have been detected in the bone marrow of normal mice and mice surviving a single injection of 5- fluorouracil. TGF-beta 1 inhibited the growth of all subpopulations of HPP colony forming cells (CFC) in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. Thus, TGF-beta directly inhibits the growth of the most immature hematopoietic cells measurable in vitro.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3448-3448
Author(s):  
Amit Verma ◽  
Tony A. Navas ◽  
Jing Ying ◽  
Aaron N. Nguyen ◽  
Perry Pahanish ◽  
...  

Abstract Transforming Growth Factor β (TGF-β) is a myelosuppressive cytokine that has been implicated in the ineffective hematopoiesis seen in myelodysplastic syndromes (MDS). Overactivation of TGF-β signaling in this disease was demonstrated immunohistochemically by significantly higher nuclear SMAD2 phosphorylation observed in 20 MDS bone marrows when compared with 7 non MDS anemic controls (P < 0.0001, 2 Tailed T Test, Image Pro Plus software). This data along with high levels of membrane-bound and plasma TGF-β observed in MDS patients in previous studies support the development of therapeutics targeting the TGF-β signaling pathways in this disease. SD-208 is a novel, potent and specific inhibitor of TGF-β Receptor I (TGFβ-RI) kinase. We demonstrate that SD-208 blocks the phosphorylation of SMAD2 in hematopoietic progenitors which are at the colony forming unit-erythroid (CFU-E) stage of differentiation. SD-208 also abrogates the G0/G1 cell cycle arrest induced by TGF-β in bone marrow progenitors. SD-208 treatment leads to reversal of the myelosuppressive effects of TGF-β on erythroid and myeloid colony formation from primary human CD34+ cells. Selectivity of SD-208 in inhibiting TGF-β-mediated effects on hematopoiesis was supported by similar results observed with siRNAs targeting SMAD2, a major component of the TGF-b signaling pathway. Finally, the efficacy of SD-208 in MDS was evaluated by treating bone marrow mononuclear cells from 15 patients with early low grade MDS. SD-208 treatment led to dose-dependent increases in erythroid and myeloid colonies after 14 days of in vitro culture. The effect was most notable in patients with high levels of activated SMAD-2, as assessed by immunohistochemical staining of bone marrow biopsies. Stimulation of hematopoiesis in MDS-derived marrow culture by SD-208 demonstrates a novel concept and potential therapeutic role for TGFβ-RI inhibition in this disease. Supported by VISN-17 grant, Harris Methodist Foundation Grant and ASCO YIA to AV


Sign in / Sign up

Export Citation Format

Share Document