scholarly journals A calculation method of gas emission zone in a coal mine considering main controlling factors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Chen ◽  
Ronghua Liu ◽  
Pushi Xuan

AbstractThe gas emission zone is an important parameter for the space–time effect of coal excavation and gas emission. In this paper, according to the effect of roadway excavation, a numerical model of gas emission zone based on the evolution of stress and permeability was established to obtain the width of gas emission zone with different pressure and permeability coefficient. Then the numerical simulation results were verified by measuring the gas content at different depths. Through numerical simulation and field measured data, the theoretical calculation formula is established on the basis of comprehensive consideration of the influencing factors of gas emission zone. The results showed that the gas emission zone increases with the increase of coal seam gas pressure and permeability coefficient when the roadway section and exposure time are the same. The measured gas emission zone, when taking gas content as the index with the same logistic function growth curve, matches the measured results with a relative error of 1.3 to 6%. The validity of the model is also verified by field experiments. The results can provide guidance for mine gas emission and gas drainage design.

2011 ◽  
Vol 361-363 ◽  
pp. 208-211
Author(s):  
Cui Jia ◽  
Yu Lin Wang ◽  
Xu Yang ◽  
Mi Shan Zhong ◽  
Nan Yan

This paper takes gas as a geological-mass to study, using gas geology theory, by analysising the geological conditions of Yongju mine in ShanXi, combining with the coal seam gas content data which measured underground to study the relationship between geological conditions and gas occurrence, reveal the gas occurrence factors: geological structure, roof and floor lithologic of coal seam, buried depth of coal seam and thickness of coal seam. Finally, using the measured data of gas content and gush, regression analysis, the gas gush is forecasted, playing a guiding role in the gas control and production safety .


2021 ◽  
Vol 257 ◽  
pp. 03026
Author(s):  
Zhonghua Wang

In order to study the temporal and spatial variation of gas flow in different rock pillar extraction boreholes, gas pressure, gas content, gas emission from 100-meter coal holes and coal seam permeability coefficient were measured on site. The site inspected the gas flow in the boreholes at 15m, 7.5m, directly above, 7.5m, and 15m at the lower slab of different rock pillar floor roadways. It analyzed the change law of gas flow in boreholes of 710 floor lanes and 505 floor lanes, which provided a basis for the layout of gas drainage boreholes.


2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


2011 ◽  
Vol 121-126 ◽  
pp. 2607-2613
Author(s):  
Qian Ting Hu ◽  
Wen Bin Wu ◽  
Guo Qiang Cheng

Outburst cavity formed during coal and gas outburst can be pear shaped, elliptical, or just like an irregularly elongated ellipsoid, its capacity is always smaller than the volume of ejected coal. And the gas emission quantity is almost 4 to 10 times as gas content in ejected coal. These are two different expressions of the same problem. To find the reasons for the decrease of outburst cavity volume and the increase of gas emission quantity per ton, by using the finite element code ANSYS, the damage zone and the failure zone of the outburst cavity were determined based on the static and dynamic combination method. In this paper, the reason for the decrease of the outburst volume was explained.


2019 ◽  
Vol 71 (2) ◽  
pp. 284-294 ◽  
Author(s):  
AiHua Zhu ◽  
Si Yang ◽  
Qiang Li ◽  
JianWei Yang ◽  
Xi Li ◽  
...  

PurposeThe purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.MethodologyBy using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.FindingsThe results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.Practical implicationsThese results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.Originality/valueAt present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.


2013 ◽  
Vol 438-439 ◽  
pp. 1427-1432
Author(s):  
Qian Xu Liao ◽  
Jin Cao ◽  
Jun Wei Tang

This paper derives a numerical simulation of direct shearing test and model pile test based on the measured data of bored piles. Characteristics of the interface between bored pile and soil around it are analyzed. Laws of the magnitude and the distribution range of point resistance and frictional resistance of the bored piles in granular and clayey soil are obtained and the mechanism on them is explained.


Author(s):  
Bryan Arko ◽  
Chad Iverson ◽  
Nicholas Staudigel

Abstract This body of work provides an initial study of modeling both surface roughness and heat transfer concurrently in a numerical simulation of micro-channels representative of those that might be found in a turbine cooling application. Increased use of additive manufacturing (AM) or 3D printing techniques for turbomachinery components enable the manufacture of complex features to achieve higher operational performance. Accurate modeling of flow losses and heat transfer effects are critical to designing parts which achieve optimal efficiency paired with durability. Surface finish is rougher with AM compared to more traditional manufacturing techniques; therefore enhancing the pressure loss and heat transfer effects. Proper implementation of surface roughness within the computational model and correct modeling of the near wall boundary mesh must be maintained to produce accurate results. This study focuses on the comparison of near wall mesh treatment coupled with surface roughness to determine a practice for obtaining accurate pressure loss and heat transfer within a cooling passage, as compared to measurements. Steady-state computational fluid dynamics (CFD) models consisting of a wind tunnel inlet nozzle and outlet diffuser, along with internal cooling passages represented using micro-channels, has been run for a range of Reynolds numbers and simulated roughness levels. Analysis of a baseline configuration with aerodynamically smooth walls is first compared to the measured data to verify the assumption of aerodynamically smooth walls. Surface roughness is then added to the channel walls, from published test coupon measurements, and compared to published experimental data for a range of Reynolds numbers. The metal surrounding the passages is also included as a conjugate heat transfer model providing heat addition to the fluid. Pressure loss and heat transfer is compared to the measured data as a friction factor and Nusselt number for the range of Reynolds numbers. Since surface roughness units and measurements vary, an effect of surface roughness values on pressure loss and heat transfer will also be investigated to determine the importance of using and converting to the correct units for the numerical model. This serves as a starting point for a guideline that will help when both heat transfer and surface roughness are included in a CFD model. Further study is recommended to understand the diminishing levels of increase in friction factor and Nusselt number observed as surface roughness was continually increased in the numerical simulation.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1983
Author(s):  
Shiran Ben-Zeev ◽  
Shane Kerzner ◽  
Onn Rabinovitz ◽  
Yehoshua Saranga

Developing new crops adapted to arid conditions is a promising approach to meet the increasing demand for food production under expanding aridity. Tef [Eragrostis tef (Zucc.) Trotter] is a C4 cereal crop cultivated mainly in Ethiopia and the Horn of Africa, and known for its high resilience to stressful environments. Due to their tiny size, tef seeds are traditionally sown by broadcasting and lightly covering with soil. Under semiarid Mediterranean conditions, a deeper sowing may guarantee seedling establishment while saving on irrigation water. The objective of this study was, therefore, to determine the effects of sowing depth on tef emergence, development, lodging, and productivity. Tef seeds were sown at different depths in test tubes and pots, and in two field experiments. In tubes and pots, time from sowing to emergence increased about twofold and emergence rate decreased in the deepest sowing (3 cm) treatment compared to controls (0 cm). In the pot and field trials, deep sowing (3 cm) significantly reduced plant height, shoot and root biomass, and lodging. Sowing depths of 1–2 cm allowed successful plant establishment while not exacting penalties on plant emergence or development; hence this range appears to be optimal for sowing irrigated tef.


Sign in / Sign up

Export Citation Format

Share Document