scholarly journals Study of EEG characteristics while solving scientific problems with different mental effort

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanmei Zhu ◽  
Qian Wang ◽  
Li Zhang

AbstractStudying the mental effort in problem-solving is important to the understanding of how the brain allocates cognitive resources to process information. The electroencephalogram is a promising physiological approach to assessing the online mental effort. In this study, we investigate the EEG indicators of mental effort while solving scientific problems. By manipulating the complexity of the scientific problem, the level of mental effort also changes. With the increase of mental effort, theta synchronization in the frontal region and lower alpha desynchronization in the parietal and occipital regions significantly increase. Also, upper alpha desynchronization demonstrates a widespread enhancement across the whole brain. According to the functional topography of brain activity in the theta and alpha frequency, our results suggest that the mental effort while solving scientific problems is related to working memory, visuospatial processing, semantic processing and magnitude manipulation. This study suggests the reliability of EEG to evaluate the mental effort in an educational context and provides valuable insights into improving the problem-solving abilities of students in educational practice.

2018 ◽  
Author(s):  
Bruno Verschuere ◽  
Nils Köbis ◽  
yoella meyer ◽  
David Gertler Rand ◽  
Shaul Shalvi

Lying typically requires greater mental effort than telling the truth. Imposing cognitive load may improve lie detection by limiting the cognitive resources needed to lie effectively, thereby increasing the difference in speed between truths and lies. We test this hypothesis meta-analytically. Across 21 studies using response-time (RT) paradigms (11 unpublished; total N = 792), we consistently found that truth telling was faster than lying, but found no evidence that imposing cognitive load increased that difference (Control, d = 1.45; Load, d = 1.28). Instead, load significantly decreased the lie-truth RT difference by increasing the RT of truths, g = -.18, p = .027. Our findings therefore suggest that imposing cognitive load does not necessarily improve RT-based lie detection, and may actually worsen it by taxing the mental system and thus impeding people’s ability to easily—and thus quickly—tell the truth


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maaly Nassar

AbstractThe present longitudinal study ascertained training-associated transformations in the neural underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. Comparing playing veterinarian versus seeing a colorful image across training sessions revealed the transition of brain activity from scientific creativity regions pre-training (left middle frontal and temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-based training transforms diagnostic reasoning in novices from regions implicated in creative semantic processing to regions implicated in improvised rule-based problem-solving.


2018 ◽  
Vol 129 ◽  
pp. e60
Author(s):  
Tomoyuki Fumuro ◽  
Masao Matsuhashi ◽  
Takefumi Hitomi ◽  
Riki Matsumoto ◽  
Ryosuke Takahashi ◽  
...  

2019 ◽  
Author(s):  
Maaly Nassar

ABSTRACTThe present longitudinal study ascertained training-associated transformations in the neural underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. Comparing playing veterinarian versus seeing a colorful image across training sessions revealed the transition of brain activity from scientific creativity regions pre-training (left middle frontal and temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-based training transforms diagnostic reasoning in novices from regions implicated in creative semantic processing to regions implicated in improvised rule-based problem-solving.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiara F. Tagliabue ◽  
Veronica Mazza

A reduction in cognitive resources has been originally proposed to account for age-related decrements in several cognitive domains. According to this view, aging limits the pool of available cognitive supplies: Compared to younger adults, elderly exhaust the resources more rapidly as task difficulty increases, hence a dramatic performance drop. Neurophysiological indexes (e.g., BOLD response and EEG activity) may be instrumental to quantify the amount of such cognitive resources in the brain and to pinpoint the stage of stimulus processing where the decrement in age-related resources is evident. However, as we discuss in this mini-review, the most recent studies on the neurophysiological markers of age-related changes lack a consistent coupling between neural and behavioral effects, which casts doubt on the advantage of measuring neural indexes to study resource deployment in aging. For instance, in the working memory (WM) domain, recent cross-sectional studies found varying patterns of concurrent age-related brain activity, ranging from equivalent to reduced and increased activations of old with respect to younger adults. In an attempt to reconcile these seemingly inconsistent findings of brain-behavior coupling, we focus on the contribution of confounding sources of variability and propose ways to control for them. Finally, we suggest an alternative perspective to explain age-related effects that implies a qualitative (instead of or along with a quantitative) difference in the deployment of cognitive resources in aging.


2019 ◽  
Vol 5 ◽  
Author(s):  
Katherine K. Fu ◽  
Brian Sylcott ◽  
Kaustav Das

Design fixation refers to blind adherence to a set of ideas, which can limit the output of conceptual design. Engineering designers tend to fixate on features of pre-existing solutions and consequently generate designs with similar features. The objective of this study is to leverage functional magnetic resonance imaging (fMRI) to study the brain activity of engineering designers during conceptual design in order to understand whether/where design fixation can be detected in a person’s brain when solving design problems. Design solutions indicated that fixation effects were detectable at a statistically significant level. fMRI results show increased activation in areas associated with visuospatial processing when comparing ideation activities using an Example solution to No Example solution. Activation was found in the right inferior temporal gyrus, left middle occipital gyrus, and right superior parietal lobule regions. The left lingual and superior frontal gyri were found to be less active in the example condition; these gyri are close in proximity to the prefrontal cortex, associated with creative output. The spatial patterns of activation provide evidence that a shift in mental resources can occur when a designer becomes fixated. For designers, the timing of ideation relative to the timing of benchmarking existing solutions should be considered.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
B. Berger ◽  
B. Griesmayr ◽  
T. Minarik ◽  
A. L. Biel ◽  
D. Pinal ◽  
...  

Abstract Transiently storing information and mentally manipulating it is known as working memory. These operations are implemented by a distributed, fronto-parietal cognitive control network in the brain. The neural mechanisms controlling interactions within this network are yet to be determined. Here, we show that during a working memory task the brain uses an oscillatory mechanism for regulating access to prefrontal cognitive resources, dynamically controlling interactions between prefrontal cortex and remote neocortical areas. Combining EEG with non-invasive brain stimulation we show that fast rhythmical brain activity at posterior sites are nested into prefrontal slow brain waves. Depending on cognitive demand this high frequency activity is nested into different phases of the slow wave enabling dynamic coupling or de-coupling of the fronto-parietal control network adjusted to cognitive effort. This mechanism constitutes a basic principle of coordinating higher cognitive functions in the human brain.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Sign in / Sign up

Export Citation Format

Share Document