scholarly journals Skin wound healing assessment via an optimized wound array model in miniature pigs

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting-Yung Kuo ◽  
Chao-Cheng Huang ◽  
Shyh-Jou Shieh ◽  
Yu-Bin Wang ◽  
Ming-Jen Lin ◽  
...  

AbstractAn appropriate animal wound model is urgently needed to assess wound dressings, cell therapies, and pharmaceutical agents. Minipig was selected owing to similarities with humans in body size, weight, and physiological status. Different wound sizes (0.07–100 cm2) were created at varying distances but fail to adequately distinguish the efficacy of various interventions. We aimed to resolve potential drawbacks by developing a systematic wound healing system. No significant variations in dorsal wound closure and contraction were observed within the thoracolumbar region between boundaries of both armpits and the paravertebral region above rib tips; therefore, Lanyu pigs appear suitable for constructing a reliable dorsal wound array. Blood flow signals interfered with inter-wound distances ˂ 4 cm; a distance > 4 cm is therefore recommended. Wound sizes ≥ 4 cm × 4 cm allowed optimal differentiation of interventions. Partial- (0.23 cm) and full-thickness (0.6 cm) wounds showed complete re-epithelialization on days 13 and 18 and strongest blood flow signals at days 4 and 11, respectively. Given histological and tensile strength assessments, tissue healing resembling normal skin was observed at least after 6 months. We established some golden standards for minimum wound size and distance between adjacent wounds for effectively differentiating interventions in considering 3R principles.

Author(s):  
Chen-Chen Zhao ◽  
Lian Zhu ◽  
Zheng Wu ◽  
Rui Yang ◽  
Na Xu ◽  
...  

Abstract Scar formation seriously affects the repair of damaged skin especially in adults and the excessive inflammation has been considered as the reason. The self-assembled peptide-hydrogels are ideal biomaterials for skin wound healing due to their similar nanostructure to natural extracellular matrix, hydration environment and serving as drug delivery systems. In our study, resveratrol, a polyphenol compound with anti-inflammatory effect, is loaded into peptide-hydrogel (Fmoc-FFGGRGD) to form a wound dressing (Pep/RES). Resveratrol is slowly released from the hydrogel in situ, and the release amount is controlled by the loading amount. The in vitro cell experiments demonstrate that the Pep/RES has no cytotoxicity and can inhibit the production of pro-inflammatory cytokines of macrophages. The Pep/RES hydrogels are used as wound dressings in rat skin damage model. The results suggest that the Pep/RES dressing can accelerate wound healing rate, exhibit well-organized collagen deposition, reduce inflammation and eventually prevent scar formation. The Pep/RES hydrogels supply a potential product to develop new skin wound dressings for the therapy of skin damage.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6123
Author(s):  
Fa-Wei Xu ◽  
Ying-Li Lv ◽  
Yu-Fan Zhong ◽  
Ya-Nan Xue ◽  
Yong Wang ◽  
...  

Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.


2003 ◽  
Vol 228 (6) ◽  
pp. 724-729 ◽  
Author(s):  
Hideyoshi Toyokawa ◽  
Yoichi Matsui ◽  
Junya Uhara ◽  
Hideto Tsuchiya ◽  
Shigeru Teshima ◽  
...  

The biological effects of far-infrared ray (FIR) on whole organisms remain poorly understood. The aim of our study was to investigate not only the hyperthermic effect of the FIR irradiation, but also the biological effects of FIR on wound healing. To evaluate the effect of FIR on a skin wound site, the speed of full-thickness skin wound healing was compared among groups with and without FIR using a rat model. We measured the skin wound area, skin blood flow, and skin temperature before and during FIR irradiation, and we performed histological inspection. Wound healing was significantly more rapid with than without FIR. Skin blood flow and skin temperature did not change significantly before or during FIR irradiation. Histological findings revealed greater collagen regeneration and infiltration of fibroblasts that expressed transforming growth factor-β1 (TGF-β1) in wounds in the FIR group than in the group without FIR. Stimulation of the secretion of TGF-β1 or the activation of fibroblasts may be considered as a possible mechanisms for the promotive effect of FIR on wound healing independent of skin blood flow and skin temperature.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2535
Author(s):  
Katarína Valachová ◽  
Ladislav Šoltés

Chitosan, industrially acquired by the alkaline N-deacetylation of chitin, belongs to β-N-acetyl-glucosamine polymers. Another β-polymer is hyaluronan. Chitosan, a biodegradable, non-toxic, bacteriostatic, and fungistatic biopolymer, has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes that these two biopolymers have a mutual impact on skin wound healing as skin wound dressings and carriers of remedies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saskia Seiser ◽  
Lukas Janker ◽  
Nina Zila ◽  
Michael Mildner ◽  
Ana Rakita ◽  
...  

AbstractOctenidine dihydrochloride (OCT) is a widely used antiseptic molecule, promoting skin wound healing accompanied with improved scar quality after surgical procedures. However, the mechanisms by which OCT is contributing to tissue regeneration are not yet completely clear. In this study, we have used a superficial wound model by tape stripping of ex vivo human skin. Protein profiles of wounded skin biopsies treated with OCT-containing hydrogel and the released secretome were analyzed using liquid chromatography-mass spectrometry (LC–MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Proteomics analysis of OCT-treated skin wounds revealed significant lower levels of key players in tissue remodeling as well as reepithelization after wounding such as pro-inflammatory cytokines (IL-8, IL-6) and matrix-metalloproteinases (MMP1, MMP2, MMP3, MMP9) when compared to controls. In addition, enzymatic activity of several released MMPs into culture supernatants was significantly lower in OCT-treated samples. Our data give insights on the mode of action based on which OCT positively influences wound healing and identified anti-inflammatory and protease-inhibitory activities of OCT.


Author(s):  
Fahim M. Mahmood ◽  
Hayder B. Sahib ◽  
Khalid W. Qassim

Wound healing is a complex physiological and dynamic process required the coordination of numerous cell types and biological processes to regenerate damaged tissue and initiate repair which is dependent on a number of inter-related factors. This study was aimed to demonstrate whether the ?2 receptor has role in wound healing and angiogenesis. A murine wild-type (in vivo), excisional skin wound model was done to demonstrate that activation of ?2AR delay wound repair, twenty-four male albino mice were used to investigate the effect of the drug on experimental wound healing grossly, histo-pathologically and immune-histochemically compared with vehicle-only controls. The results showed that the rate of wound healing was significantly slower in salbutamol group than in control group (P


2018 ◽  
Vol 49 (3) ◽  
pp. 1074-1089 ◽  
Author(s):  
Ying Zhao ◽  
Qiang Wang ◽  
Yuan Jin ◽  
Yadan Li ◽  
Changjun Nie ◽  
...  

Background/Aims: How to aid recovery from severe skin injuries, such as burns, chronic or radiation ulcers, and trauma, is a critical clinical problem. Current treatment methods remain limited, and the discovery of ideal wound-healing therapeutics has been a focus of research. Functional recombinant proteins such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) have been developed for skin repair, however, some disadvantages in their use remain. This study reports the discovery of a novel small peptide targeting fibroblast growth factor receptor 2 IIIc (FGFR2IIIc) as a potential candidate for skin wound healing. Methods: A phage-displayed peptide library was used for biopanning FGFR2IIIc-targeting small peptides. The selected small peptides binding to FGFR2IIIc were qualitatively evaluated by an enzyme-linked immunosorbent assay. Their biological function was detected by a cell proliferation assay. Among them, an optimized small peptide named H1 was selected for further study. The affinity of the H1 peptide and FGFR2IIIc was determined by an isothermal titration calorimetry device. The ability of theH1 peptide to promote skin wound repair was investigated using an endothelial cell tube formation assay and wound healing scratch assay in vitro. Subsequently, the H1 peptide was assessed using a rat skin full-thickness wound model and chorioallantoic membrane (CAM) assays in vivo. To explore its molecular mechanisms, RNA-Seq, quantitative real-time PCR, and western blot assays were performed. Computer molecular simulations were also conducted to analyze the binding model. Results: We identified a novel FGFR2IIIc-targeting small peptide, called H1, with 7 amino acid residues using phage display. H1 had high binding affinity with FGFR2IIIc. The H1 peptide promoted the proliferation and motility of fibroblasts and vascular endothelial cells in vitro. In addition, the H1 peptide enhanced angiogenesis in the chick chorioallantoic membrane and accelerated wound healing in a rat full-thickness wound model in vivo. The H1 peptide activated both the PI3K-AKT and MAPK-ERK1/2 pathways and simultaneously increased the secretion of vascular endothelial growth factor. Computer analysis demonstrated that the model of H1 peptide binding to FGFR2IIIc was similar to that of FGF2 and FGFR2IIIc. Conclusion: The H1 peptide has a high affinity for FGFR2IIIc and shows potential as a wound healing agent. As a substitute for bFGF, it could be developed into a novel therapeutic candidate for skin wound repair in the future.


2019 ◽  
Vol 13 (3) ◽  
pp. 101 ◽  
Author(s):  
Mohammad Mahfuz Ali Khan Shawan ◽  
Nazmul Islam ◽  
Shahin Aziz ◽  
Nazia Khatun ◽  
Satya Ranjan Sarker ◽  
...  

With the background of snowballing threat of skin wound to public health and economy, this study was undertaken utilizing xanthan gum (Xnt), citric acid (C), gelatin (Gel), glutaraldehyde (G) and HPLC-grade water to fabricate a series of composite hydrogels i.e. Xnt, Xnt:C, Xnt:Gel(3):G, Xnt:C:Gel(3):G, Xnt:Gel(5):G, Xnt:C:Gel(5):G for investigating their wound healing efficacy in experimental rat skin wound model. Physicochemical characterization revealed that all the composite hydrogels contained more than 90% water. The hydrogels displayed swelling ability, biodegradability, good polymeric networks and porosity. Fourier Transform Infrared Spectroscopy (FT-IR) studies confirmed the presence of bound water and free, intra and inter molecular bound hydrogen bonded OH and NH in the hydrogels. All the hydrogels showed significant wound healing potency in experimental deep second degree skin burns in rats compared to controls. 20 days post-application of hydrogels, Xnt:Gel(3):G, Xnt:Gel(5):G and Xnt:C:Gel(5):G-treated wounds showed better recovery compared to other composite hydrogels. We conclude that, Xnt:Gel(3):G, Xnt:Gel(5):G and Xnt:C:Gel(5):G might be effective wound dressing material.


Author(s):  
T. R. Patil ◽  
R. P. Limaye

Background-Euphorbia prostrata possesses many actions one of which is wound healing. Skin wound healing is a significant health care problem which clinician faces still. Hence this study was planned to evaluate effect of euphorbia prostrata on skin wound healing. Material and methods-This study was conducted among randomly selected wistar rats (n=6 per group). Group A and Group B had Cream and 1% euphorbia prostrate cream applied topically on the excisional wound respectively. Wound healing and epithelisation was assessed on Days 4,8,12,16,20. Results: Group A showed an average wound size of 348±13.0 on day 4, 278±10.5 on day 8, 119±9.8 on day 12, 86±9.2 on day 16 and 100% wound healing was observed day 20 onwards. Group B showed an average wound size of 296±11.0 on day 4, 147±9.5 on day 8 and complete wound healing was observed day 12 onwards in the test group. Conclusion: Euphorbia prostrata holds promise as effective drug therapy for wound healing.


Sign in / Sign up

Export Citation Format

Share Document