scholarly journals Low soil moisture predisposes field-grown chickpea plants to dry root rot disease: evidence from simulation modeling and correlation analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ranjita Sinha ◽  
Vadivelmurugan Irulappan ◽  
Basavanagouda S. Patil ◽  
Puli Chandra Obul Reddy ◽  
Venkategowda Ramegowda ◽  
...  

AbstractRhizoctonia bataticola causes dry root rot (DRR), a devastating disease in chickpea (Cicer arietinum). DRR incidence increases under water deficit stress and high temperature. However, the roles of other edaphic and environmental factors remain unclear. Here, we performed an artificial neural network (ANN)-based prediction of DRR incidence considering DRR incidence data from previous reports and weather factors. ANN-based prediction using the backpropagation algorithm showed that the combination of total rainfall from November to January of the chickpea-growing season and average maximum temperature of the months October and November is crucial in determining DRR occurrence in chickpea fields. The prediction accuracy of DRR incidence was 84.6% with the validation dataset. Field trials at seven different locations in India with combination of low soil moisture and pathogen stress treatments confirmed the impact of low soil moisture on DRR incidence under different agroclimatic zones and helped in determining the correlation of soil factors with DRR incidence. Soil phosphorus, potassium, organic carbon, and clay content were positively correlated with DRR incidence, while soil silt content was negatively correlated. Our results establish the role of edaphic and other weather factors in chickpea DRR disease incidence. Our ANN-based model will allow the location-specific prediction of DRR incidence, enabling efficient decision-making in chickpea cultivation to minimize yield loss.

2021 ◽  
Vol 23 (4) ◽  
pp. 428-434
Author(s):  
PRABIR KUMAR GARAIN ◽  
BHOLANATH MONDAL ◽  
SUBRATA DUTTA

A study was conducted to find out the influence of weather factors, soil temperature and soil moisture on the incidence of Sclerotium rolfsii Sacc. induced collar rot disease in betelvine (Piper betle L.), during 2016 to 2018. Fourteen soil and weather factors, taken from the agrometeorological observatory located at instructional farm of Ramkrishna Ashram Krishi Vigyan Kendra, Nimpith and recorded from a nearby betelvine boroj, were subjected to multiple regression, binary logistic regression and canonical discriminant analysis to develop a suitable disease forewarning model. The binary logistic model, Y(0/1) = 5.899 + 0.865 (Tmax) – 0.569 (SM) + 0.097 (BRHmin) was able to predict the disease risk with 78 per cent accuracy and correctly classified 94 per cent of cases during model validation in 2018. The weekly averages of maximum temperature (Tmax), soil moisture (SM) and minimum relative humidity inside the boroj (BRHmin) were found to be the most significant predictors of disease incidence, in this model. The soil moisture at 69 - 72 per cent of field capacity, minimum temperature of 25 - 27oC, maximum temperature of 33 - 36oC, average soil temperature of 28 - 30oC, minimum relative humidity of 60 - 72 per cent inside the boroj and maximum relative humidity of 83 - 89 per cent inside the boroj were found to be highly congenial for collar rot disease incidence in betelvine under coastal saline zone of West Bengal.


2005 ◽  
Vol 95 (12) ◽  
pp. 1381-1390 ◽  
Author(s):  
Mahfuzur Rahman ◽  
Zamir K. Punja

The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21°C, respectively and there was no growth at 35°C. Mycelial mass production was significantly (P ≤ 0.01) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in Hoagland's solution. Lesions were significantly larger (P < 0.001) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-year-old ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P < 0.002) enhanced by increasing the inoculum density from 3.45 × 102 CFU/g of soil to 1.86 × 103 CFU/g of soil. Disease severity was higher at 20°C compared with 15 and 25°C and at -0.02 MPa soil moisture compared with -0.005 and -0.001 MPa. A significant interaction between soil moisture and temperature was observed for root rot severity.


2021 ◽  
Vol 22 (2) ◽  
pp. 191-197
Author(s):  
K. PHILIP ◽  
S.S. ASHA DEVI ◽  
G.K. JHA ◽  
B.M.K. RAJU ◽  
B. SEN ◽  
...  

The impact of climate change on agriculture is well studied yet there is scope for improvement as crop specific and location specific impacts need to be assessed realistically to frame adaptation and mitigation strategies to lessen the adverse effects of climate change. Many researchers have tried to estimate potential impact of climate change on wheat yields using indirect crop simulation modeling techniques. Here, this study estimated the potential impact of climate change on wheat yields using a crop specific panel data set from 1981 to 2010,for six major wheat producing states. The study revealed that 1°C increase in average maximum temperature during the growing season reduces wheat yield by 3 percent. Major share of wheat growth and yield (79%) is attributed to increase in usage of physical inputs specifically fertilizers, machine labour and human labour. The estimated impact was lesser than previously reported studies due to the inclusion of wide range of short-term adaptation strategies to climate change. The results reiterate the necessity of including confluent factors like physical inputs while investigating the impact of climate factors on crop yields.


Author(s):  
M. Saratha ◽  
K. Angappan ◽  
S. Karthikeyan ◽  
S. Marimuthu ◽  
K. Chozhan

Aims: To record the occurrence of mulberry root rot disease, epidemiology, interaction of weather and soil parameters with the soil-borne pathogens in Western zone of Tamil Nadu during 2019-2020. Study Design: Survey. Place and Duration of Study: Surveyed in Coimbatore, Tiruppur, Erode, Dharmapuri and Krishnagiri districts of Tamil Nadu. Laboratory experiments were carried out at Department of Sericulture & Department of Plant Pathology, Tamil Nadu Agricultural University (TNAU), Coimbatore between July 2019 and Jan 2021. Methodology: Per cent disease incidence of root rot was recorded in all surveyed gardens. To analyze the soil and weather parameters, the composite soil samples were subjected to textural analysis and weather data were collected from TNAU Agro Climate Research Centre. To predict soil temperature for all surveyed locations, the model regression equations were derived. The correlation analysis was done between per cent disease incidence, weather and soil parameters. Results: The highest disease incidence was recorded in Nallampalli block of Dharmapuri district (54 per cent) whereas the lowest in Udumalaipettai block of Tiruppur district (0.06 per cent). The infected mulberry root samples yielded complex of soil-borne pathogens including Macrophomina phaseolina, Lasiodiplodia theobromae, Fusarium sp., and pathogenicity was proved. The results revealed that root rot incidence was recorded in all types of cultivars, significantly in ruling variety V1 irrespective of its age, soil type, spacing, and irrigation method. Soil parameters like texture, temperature and moisture content were found to augment the disease. Per cent disease incidence had significantly positive correlation with the weather factors like air and soil temperature whereas negative correlation with relative humidity and rainfall. Conclusion: Synergism of abiotic stress factors hinders the mulberry plant health and increases its susceptibility to the soil-borne pathogens.


2020 ◽  
Vol 12 (17) ◽  
pp. 7023 ◽  
Author(s):  
Netrananda Sahu ◽  
Atul Saini ◽  
Swadhin Behera ◽  
Takahiro Sayama ◽  
Sridhara Nayak ◽  
...  

The impact of Indo-Pacific climate variability in the South Asian region is very pronounced and their impact on agriculture is very important for the Indian subcontinent. In this study, rice productivity, climatic factors (Rainfall, Temperature and Soil Moisture) and associated major Indo-Pacific climate indices in Bihar were investigated. Bihar is one of the major rice-producing states of India and the role of climate variability and prevailing climate indices in six events (between 1991–2014) with severer than −10% rice productivity are analyzed. The Five-year moving average, Pearson’s Product Moment Correlation, Partial Correlation, Linear Regression Model, Mann Kendall Test, Sen’s Slope and some other important statistical techniques were used to understand the association between climatic variables and rice productivity. Pearson’s Product Moment Correlation provided an overview of the significant correlation between climate indices and rice productivity. Whereas, Partial Correlation provided the most refined results on it and among all the climate indices, Niño 3, Ocean Niño Index and Southern Oscillation Index are found highly associated with years having severer than −10% decline in rice productivity. Rainfall, temperature and soil moisture anomalies are analyzed to observe the importance of climate factors in rice productivity. Along with the lack of rainfall, lack of soil moisture and persistent above normal temperature (especially maximum temperature) are found to be the important factors in cases of severe loss in rice productivity. Observation of the dynamics of ocean-atmosphere coupling through the composite map shows the Pacific warming signals during the event years. The analysis revealed a negative (positive) correlation of rice productivity with the Niño 3 and Ocean Niño Index (Southern Oscillation Index).


2021 ◽  
Vol 22 (2) ◽  
pp. 165-171
Author(s):  
JAIONTO KARMOKAR ◽  
M. AMINUL ISLAM ◽  
M. RAKIB HASSAN ◽  
M.M. BILLAH

In Bangladesh, 75% of the total cultivable area is under rice cultivation producing 25 million tons of rice and plays a vital role in the country’s GDP. The climatic variability is playing an important role in affecting the rice production. In this study, the impact of climatic variability (average maximum temperature (aMaxTemp), average minimum temperature (aMinTemp) and average rainfall (aRainfall)) on rice yield was determined in two different regions (northern and southern) of Bangladesh.The variability of rice yield and climate factors was determined by using the Ordinary Least Square (OLS) method. The data was analyzed over the 44-years period (1971 to 2014) in order to estimate the magnitude of these fluctuations statistically and graphically. We observed that the climate variables had significant effect on rice yield that varies among three rice crops (e.g., Aus, Aman, and Boro rice). We observed that, aMaxTemp has positive effects for Aus and Aman rice yield but negative effect on Boro rice yield. On the other hand, aMinTemp has negative effects on Aus and Aman rice yield but has positive effect on Boro rice yield. The aRainfall has a positive relationship with all rice yields in both the regions.


2015 ◽  
Vol 16 (1) ◽  
pp. 232-243 ◽  
Author(s):  
Emma E. Daniels ◽  
Ronald W. A. Hutjes ◽  
Geert Lenderink ◽  
Reinder J. Ronda ◽  
Albert A. M. Holtslag

Abstract In this paper, the Weather Research and Forecasting (WRF) Model is used to investigate the sensitivity of precipitation to soil moisture and urban areas in the Netherlands. The average output of a 4-day event during 10–13 May 1999 for which the individual days had similar synoptical forcing is analyzed. Four simulations are conducted to test the impact of soil moisture changes on precipitation. A positive soil moisture–precipitation feedback is found, that is, wet (dry) soils increase (decrease) the amount of precipitation. Three additional experiments are executed, two in which urban areas in the Netherlands are expanded and one where urban areas are completely removed. Expansion of urban areas results in an increase of the sensible heat flux and a deeper planetary boundary layer, similar to reducing soil moisture. Expanding urban areas reduces precipitation over the Netherlands as a whole, but the local response is not clear. Within existing urban areas, mean and maximum temperature increases of 0.4 and 2 K, respectively, are found under an urban coverage scenario for 2040. The ratio of evapotranspiration to precipitation (a measure of the soil moisture–precipitation feedback) in the urbanization experiments is only about one-third (23%) of that in the soil moisture experiments (67%). Triggering of precipitation, on the other hand, is relatively high in the urban expansion experiments. The effects of reduced moisture availability and enhanced triggering in the urban expansion experiments compensate each other, leading to the moderate reduction in precipitation.


2015 ◽  
Vol 19 (12) ◽  
pp. 1-24 ◽  
Author(s):  
A L. Hirsch ◽  
A. J. Pitman ◽  
J. Kala ◽  
R. Lorenz ◽  
M. G. Donat

Abstract The role of land–atmosphere coupling in modulating the impact of land-use change (LUC) on regional climate extremes remains uncertain. Using the Weather and Research Forecasting Model, this study combines the Global Land–Atmosphere Coupling Experiment with regional LUC to assess the combined impact of land–atmosphere coupling and LUC on simulated temperature extremes. The experiment is applied to an ensemble of planetary boundary layer (PBL) and cumulus parameterizations to determine the sensitivity of the results to model physics. Results show a consistent weakening in the soil moisture–maximum temperature coupling strength with LUC irrespective of the model physics. In contrast, temperature extremes show an asymmetric response to LUC dependent on the choice of PBL scheme, which is linked to differences in the parameterization of vertical transport. This influences convective precipitation, contributing a positive feedback on soil moisture and consequently on the partitioning of the surface turbulent fluxes. The results suggest that the impact of LUC on temperature extremes depends on the land–atmosphere coupling that in turn depends on the choice of PBL. Indeed, the sign of the temperature change in hot extremes resulting from LUC can be changed simply by altering the choice of PBL. The authors also note concerns over the metrics used to measure coupling strength that reflect changes in variance but may not respond to LUC-type perturbations.


Sign in / Sign up

Export Citation Format

Share Document