scholarly journals Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nelson Martínez-Matías ◽  
Nataliya Chorna ◽  
Sahily González-Crespo ◽  
Lilliam Villanueva ◽  
Ingrid Montes-Rodríguez ◽  
...  

AbstractFunctional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins. These observations support the idea that Mtl1 protein controls the suppression of a non-lethal heat stress response under normal conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 signaling that are required to maintain cellular homeostasis and optimal mitochondrial function.

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Yangjie Hu ◽  
Sotirios Fragkostefanakis ◽  
Enrico Schleiff ◽  
Stefan Simm

Transcriptional reprograming after the exposure of plants to elevated temperatures is a hallmark of stress response which is required for the manifestation of thermotolerance. Central transcription factors regulate the stress survival and recovery mechanisms and many of the core responses controlled by these factors are well described. In turn, pathways and specific genes contributing to variations in the thermotolerance capacity even among closely related plant genotypes are not well defined. A seedling-based assay was developed to directly compare the growth and transcriptome response to heat stress in four tomato genotypes with contrasting thermotolerance. The conserved and the genotype-specific alterations of mRNA abundance in response to heat stress were monitored after exposure to three different temperatures. The transcripts of the majority of genes behave similarly in all genotypes, including the majority of heat stress transcription factors and heat shock proteins, but also genes involved in photosynthesis and mitochondrial ATP production. In turn, genes involved in hormone and RNA-based regulation, such as auxin- and ethylene-related genes, or transcription factors like HsfA6b, show a differential regulation that associates with the thermotolerance pattern. Our results provide an inventory of genes likely involved in core and genotype-dependent heat stress response mechanisms with putative role in thermotolerance in tomato seedlings.


2010 ◽  
Vol 431 (1) ◽  
pp. 31-38 ◽  
Author(s):  
L. Ashley Cowart ◽  
Jason L. Gandy ◽  
Baby Tholanikunnel ◽  
Yusuf A. Hannun

Recent work, especially in the yeast Saccharomyces cerevisiae, has demonstrated that mRNA movement from active translation to cytoplasmic granules, termed mRNA‘p-bodies’ (processing bodies), occurs in concert with the regulation of translation during cell stress. However, the signals regulating p-body formation are poorly defined. Recent results have demonstrated a function for sphingolipids in regulating translation during heat stress, which led to the current hypothesis that p-bodies may form during heat stress in a sphingolipid-dependent manner. In the present study, we demonstrate that mild-heat-stress-induced formation of p-bodies, as determined by localization of a GFP (green fluorescent protein)-tagged Dcp2p and RFP (red fluorescent protein)-tagged Edc3p to discrete cytoplasmic foci. Sphingoid base synthesis was required for this effect, as inhibition of sphingoid base synthesis attenuated formation of these foci during heat stress. Moreover, treatment of yeast with the exogenous sphingoid bases phyto- and dihydro-sphingosine promoted formation of p-bodies in the absence of heat stress, and the lcb4/lcb5 double-deletion yeast, which accumulates high intracellular levels of sphingoid bases, had large clearly defined p-bodies under non-stress conditions. Functionally, inhibition of sphingolipid synthesis during heat stress did not prevent translation stalling, but extended translation arrest, indicating that sphingolipids mediate translation initiation. These results are consistent with the notion that p-bodies serve not only in mRNA degradation, but also for re-routing transcripts back to active translation, and that sphingolipids play a role in this facet of the heat-stress response. Together, these results demonstrate a critical and novel role for sphingolipids in mediating p-body formation during heat stress.


2019 ◽  
Vol 20 (22) ◽  
pp. 5603 ◽  
Author(s):  
Dong Xue ◽  
Wenzheng Liu ◽  
Yun Chen ◽  
Yingying Liu ◽  
Jiahui Han ◽  
...  

Deinococcus radiodurans is best known for its extraordinary resistance to diverse environmental stress factors, such as ionizing radiation, ultraviolet (UV) irradiation, desiccation, oxidation, and high temperatures. The heat response of this bacterium is considered to be due to a classical, stress-induced regulatory system that is characterized by extensive transcriptional reprogramming. In this study, we investigated the key functional genes involved in heat stress that were expressed and accumulated in cells (R48) following heat treatment at 48 °C for 2 h. Considering that protein degradation is a time-consuming bioprocess, we predicted that to maintain cellular homeostasis, the expression of the key functional proteins would be significantly decreased in cells (RH) that had partly recovered from heat stress relative to their expression in cells (R30) grown under control conditions. Comparative transcriptomics identified 15 genes that were significantly downregulated in RH relative to R30, seven of which had previously been characterized to be heat shock proteins. Among these genes, three hypothetical genes (dr_0127, dr_1083, and dr_1325) are highly likely to be involved in response to heat stress. Survival analysis of mutant strains lacking DR_0127 (a DNA-binding protein), DR_1325 (an endopeptidase-like protein), and DR_1083 (a hypothetical protein) showed a reduction in heat tolerance compared to the wild-type strain. These results suggest that DR_0127, DR_1083, and DR_1325 might play roles in the heat stress response. Overall, the results of this study provide deeper insights into the transcriptional regulation of the heat response in D. radiodurans.


2021 ◽  
Vol 15 (2) ◽  
pp. 188-193
Author(s):  
Xu Qian ◽  
Hua Zhou ◽  
Heng Cai

UDP-glucose pyrophosphorylase (UGP1) is an important metabolic enzyme in Saccharomyces cerevisiae. In this research, we built a strain with reduced ugp1 level for exploring its biological roles. The survival rate, trehalose, glucan, and the sensitivity to cell wall perturbing agents were tested. Intracellular trehalose and glucan of ugp1 knockdown (ugp1KD) strain showed 37.4% and 56.69% of WT strain at 42 °C. Meanwhile, the survival rate declined to 33.83% after 2 hours and to 8.44% after 8 hours. The cell wall was more susceptible to Congo red, SDS, and Calcofluor white. After complementing ugp1(UGP1C), the resistance to heat-stress and cell wall perturbing agents were rescued markedly. The 1,3-β-D-glucan synthase (FKS1) expression level was affected by knocking down ugp1, as well. Our data suggest that ugp1 is required in the heat stress response of S. cerevisiae by influencing trehalose and glucan, and provides a foundation elucidating the essence of survival under heat stress.


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

Sign in / Sign up

Export Citation Format

Share Document