scholarly journals Assessment of water resource security in karst area of Guizhou Province, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liying Liu

AbstractThis paper presents the assessment of water resource security in the Guizhou karst area, China. A mean impact value and back-propagation (MIV-BP) neural network was used to understand the influencing factors. Thirty-one indices involving five aspects, the water quality subsystem, water quantity subsystem, engineering water shortage subsystem, water resource vulnerability subsystem, and water resource carrying capacity subsystem, were selected to establish an evaluation index of water resource security. In addition, a genetic algorithm and back-propagation (GA-BP) neural network was constructed to assess the water resource security of Guizhou Province from 2001 to 2015. The results show that water resource security in Guizhou was at a moderate warning level from 2001 to 2006 and a critical safety level from 2007 to 2015, except in 2011 when a moderate warning level was reached. For protection and management of water resources in a karst area, the modes of development and utilization of water resources must be thoroughly understood, along with the impact of engineering water shortage. These results are a meaningful contribution to regional ecological restoration and socio-economic development and can promote better practices for future planning.

2019 ◽  
Vol 11 (20) ◽  
pp. 5671 ◽  
Author(s):  
Zhou ◽  
Su ◽  
Zhang

An important basis to achieve a sustainable balance between water availability and demand is effectively identifying the factors affecting water resource security and evaluating the effectiveness of existing water resource management measures. To reasonably evaluate water resource security in Guizhou Province, this study combined the water resource security features, selected the indicator system based on the Press–Status–Effect–Response (PSER) framework, and used Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and grey correlation analysis for the province from 2001 to 2015. This allowed us to identify the main driving factors affecting water resource security. The results showed that: (1) Water resource security in Guizhou Province showed an overall trend of improvement from 2001 to 2015 and reached a maximum index of 0.57 in 2015. This amelioration in water security was mainly due to the continuous improvement of the response and effect subgroup as a result of improvements in its existing subgroup factors (policies), such as water consumption per unit of gross domestic product (GDP), the proportion of water conservancy investment, and the proportion of the tertiary industry. Increased water stress due to rapid economic development, such as water supply for the reservoir, and the instability of the status subgroup, were the main factors negatively affecting water resource security. (2) Reduction of water consumption per USD of industrial value added, the control force of water and soil erosion being strengthened, and investment in water resources being increased, are the key factors for achieving water resource security in Guizhou during this period of rapid social and economic development. This indicates that the existing water resource management measures have been improving water resource security. The management measures need to be further improved in the future to protect water resource.


2015 ◽  
Vol 15 (6) ◽  
pp. 1259-1274 ◽  
Author(s):  
Yu-Ting Chang ◽  
Hai-Long Liu ◽  
An-Ming Bao ◽  
Xi Chen ◽  
Ling Wang

Because of rapid economic development and urbanization, water shortage has become a serious problem in the arid region of China. To investigate urban water resource security, the supply demand pressure of water resources and the urban expansion index were analyzed under different developing scenarios in this paper. Based on the economic data of Urumqi, a typical inland city in the arid area, under the present development scenario from 2011 to 2030, a system dynamics model was constructed to simulate the water resource security. The results show that there will be great influence of urban expansion on water resource security in Urumqi in the future. Water resources are projected to become increasingly scarce if the urban expansion is left unchanged in terms of population, economic growth and water-use efficiency. To find a sustainable method for water resource use, four scenarios of urban expansion were set up based on the sensitive variables. Based on comparison of water consumption under the different scenarios, the harmonize scheme for urban water resource security is the best choice for the development of Urumqi. If the impact of urban expansion on urban water resource security alleviates in the future, the main parameters would have to reach a new standard of water use. Reducing the sewage and increasing the reuse proportion of wastewater are also very important for relieving the stress of water shortage. This research can serve as a reference for water resource allocation and urban planning in arid areas.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 786 ◽  
Author(s):  
Liying Liu ◽  
Dongjie Guan ◽  
Qingwei Yang

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 831
Author(s):  
Wang ◽  
Cui ◽  
Shao ◽  
Zhang

The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (BP) neural network was used as a surrogate model of a groundwater numerical simulation; the improved BP neural network was trained with the groundwater level drawdown–pumping volume data output of the simulation model. The method was applied to the water resource optimal allocation in the near future of Wenshang County, Shandong Provence of China. The results show that the water level drawdown output of the improved BP neural network model fits the results of the simulation model well, showing that the improved BP neural network can effectively be the surrogate of a groundwater numerical simulation to be embedded in an optimization model. The improved simulation and optimization technique can make full use of water resources in the whole area. Under an assurance rate of 50%, both water shortage and water shortage rate reduced to zero in the whole area. Under an assurance rate of 75%, water shortage and water shortage rate reduced to about 10% of the conventional scheme, which dramatically improves the comprehensive benefit of the whole area.


2013 ◽  
Vol 740 ◽  
pp. 778-781
Author(s):  
Yan Dong Peng ◽  
Chun Yun Yu

With the quick development of economy, increase o f population and urbanization, urban water security becomes a limited factor to fulfill the urban sustainable development. Qinhuangdao is a water shortage of resources and pollution-induced water shortage city. Under the major background of global warming, the climate of Qinhuangdao becoming warmer and drier in recent years, the precipitation has decreased correspondingly. The rivers runoff reduces obviously and the level of the groundwater drops. The quantity of usable water resource is reduced significantly. Impacted by the urbanization, social-economic development and rapid population growth, the demand of water resource increases continuously. The security situation of water resource in Qinhuangdao is becoming more severe. Through analyzing the water resource situation, existing issues and reasons in Qinhuangdao city, the author proposed regulating approaches to ensure safety of water resources.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1106 ◽  
Author(s):  
Guanghua Dong ◽  
Juqin Shen ◽  
Yizhen Jia ◽  
Fuhua Sun

The security of water resources is the core content and ultimate goal of urban water resource management agencies. The management of water resources is directly related to the needs of urban residents’ lives and the area’s socio-economic development. How to determine the effective evaluation indicators and methods is an important prerequisite to solving the water resource security problem. This study took Luoyang City as the research area and constructed a water resource security evaluation index system based on pressure-state-response framework. An analytic hierarchy process and entropy weight method were used to determine the index weight. A set pair analysis model was then introduced to evaluate the security of water resources in Luoyang from 2006 to 2016. The results of this study show that the standard of water resource security generally improved in Luoyang in the latter years of the study period. From 2006 to 2008, Luoyang was graded at the Insecurity Level. This compares to a slightly improved grading of Critical Security Level from 2009 to 2016 (except for 2013). However, the overall grade is still low. The pressure on the Luoyang water resource system mainly comes from the development of the urban socio-economy, which in turn has caused problems for both the quantity and quality of water resources. Therefore, a series of countermeasures have been introduced as a means of improving the water resource security of Luoyang, and these measures have achieved certain results. However, further improvements to the efficiency of water resource utilization and strengthening the management and protection of water resources remain necessary.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1454
Author(s):  
Liu Liying ◽  
Guan Dongjie ◽  
Yang Qingwei ◽  

The Water Editorial Office has been made aware that the published paper [1] has a significant overlap with a previously published manuscript from the same authors, submitted to a Chinese journal.[...]


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Author(s):  
Lizhi Gu ◽  
Tianqing Zheng

Precision improvement in sheet metal stamping has been the concern that the stamping researchers have engaged in. In order to improve the forming precision of sheet metal in stamping, this paper devoted to establish the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping based on BP neural network. Factors influencing the forming precision of stamping sheet metal were divided, altogether ten factors, and the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping was established using the back-propagation algorithm of error based on BP neural network. The undetermined coefficients of the model previously established were soluble according to the simulation data of sheet punching combined with the specific shape based on the BP neural network. With this mathematical model, the forecast data compared with the validate data could be obtained, so as to verify the fine practicability that the previously established mathematical model had, and then, it was shown that the generalized holo-factors mathematical model of size error and shape-error had fine practicality and versatility. Based on the generalized holo-factors mathematical model of error exemplified by the cylindrical parts, a group of process parameters could be selected, in which forming thickness was between 0.713 mm and 1.335 mm, major strain was between 0.085 and 0.519, and minor strain was between −0.596 and 0.319 from the generalized holo-factors mathematical model prediction, at the same time, the forming thickness, the major strain, and the minor strain were in good condition.


Sign in / Sign up

Export Citation Format

Share Document