scholarly journals Comprehensive Evaluation of Water Resource Security: Case Study from Luoyang City, China

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1106 ◽  
Author(s):  
Guanghua Dong ◽  
Juqin Shen ◽  
Yizhen Jia ◽  
Fuhua Sun

The security of water resources is the core content and ultimate goal of urban water resource management agencies. The management of water resources is directly related to the needs of urban residents’ lives and the area’s socio-economic development. How to determine the effective evaluation indicators and methods is an important prerequisite to solving the water resource security problem. This study took Luoyang City as the research area and constructed a water resource security evaluation index system based on pressure-state-response framework. An analytic hierarchy process and entropy weight method were used to determine the index weight. A set pair analysis model was then introduced to evaluate the security of water resources in Luoyang from 2006 to 2016. The results of this study show that the standard of water resource security generally improved in Luoyang in the latter years of the study period. From 2006 to 2008, Luoyang was graded at the Insecurity Level. This compares to a slightly improved grading of Critical Security Level from 2009 to 2016 (except for 2013). However, the overall grade is still low. The pressure on the Luoyang water resource system mainly comes from the development of the urban socio-economy, which in turn has caused problems for both the quantity and quality of water resources. Therefore, a series of countermeasures have been introduced as a means of improving the water resource security of Luoyang, and these measures have achieved certain results. However, further improvements to the efficiency of water resource utilization and strengthening the management and protection of water resources remain necessary.

2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


2019 ◽  
Vol 11 (20) ◽  
pp. 5671 ◽  
Author(s):  
Zhou ◽  
Su ◽  
Zhang

An important basis to achieve a sustainable balance between water availability and demand is effectively identifying the factors affecting water resource security and evaluating the effectiveness of existing water resource management measures. To reasonably evaluate water resource security in Guizhou Province, this study combined the water resource security features, selected the indicator system based on the Press–Status–Effect–Response (PSER) framework, and used Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and grey correlation analysis for the province from 2001 to 2015. This allowed us to identify the main driving factors affecting water resource security. The results showed that: (1) Water resource security in Guizhou Province showed an overall trend of improvement from 2001 to 2015 and reached a maximum index of 0.57 in 2015. This amelioration in water security was mainly due to the continuous improvement of the response and effect subgroup as a result of improvements in its existing subgroup factors (policies), such as water consumption per unit of gross domestic product (GDP), the proportion of water conservancy investment, and the proportion of the tertiary industry. Increased water stress due to rapid economic development, such as water supply for the reservoir, and the instability of the status subgroup, were the main factors negatively affecting water resource security. (2) Reduction of water consumption per USD of industrial value added, the control force of water and soil erosion being strengthened, and investment in water resources being increased, are the key factors for achieving water resource security in Guizhou during this period of rapid social and economic development. This indicates that the existing water resource management measures have been improving water resource security. The management measures need to be further improved in the future to protect water resource.


2020 ◽  
Vol 20 (4) ◽  
pp. 1554-1566
Author(s):  
Junlong Liu ◽  
Jin Chen ◽  
Zhe Yuan ◽  
Jijun Xu ◽  
Yongqiang Wang ◽  
...  

Abstract To reasonably evaluate the water resource security state, this research built a water resource security evaluation index system of the Yangtze River Economic Belt (YREB) based on the driving force-pressure-state-impact (DPSI) concept framework, established a water resource security evaluation model by combining the entropy weight method with the fuzzy set pair analysis method and conducted quantitative evaluations of the water resource security states from 2008 to 2016. All the work above was based on the comprehensive consideration of the water resource characteristics in different areas of the YREB, following the index system construction principles. The results have shown that on the whole, the water resource security state of the YREB has generally undergone a process from getting worse to getting better in the latest nine years. From the aspect of the percentages of the water resource security grades, the spatial distribution of water resource security in the YREB is highest in the downstream area, second in the middle reaches, and lowest in the upper reaches. From the aspect of the DPSI security evaluation results, the driving force and state of the water resource are the important factors affecting the water resource security of the YREB.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liying Liu

AbstractThis paper presents the assessment of water resource security in the Guizhou karst area, China. A mean impact value and back-propagation (MIV-BP) neural network was used to understand the influencing factors. Thirty-one indices involving five aspects, the water quality subsystem, water quantity subsystem, engineering water shortage subsystem, water resource vulnerability subsystem, and water resource carrying capacity subsystem, were selected to establish an evaluation index of water resource security. In addition, a genetic algorithm and back-propagation (GA-BP) neural network was constructed to assess the water resource security of Guizhou Province from 2001 to 2015. The results show that water resource security in Guizhou was at a moderate warning level from 2001 to 2006 and a critical safety level from 2007 to 2015, except in 2011 when a moderate warning level was reached. For protection and management of water resources in a karst area, the modes of development and utilization of water resources must be thoroughly understood, along with the impact of engineering water shortage. These results are a meaningful contribution to regional ecological restoration and socio-economic development and can promote better practices for future planning.


Author(s):  
Runwen Jiang ◽  
Xiaohong Chen ◽  
Lingchu Zhao ◽  
Zhifang Zhou ◽  
Tao Zhang

AbstractDue to uncertainties in water supply, there is growing demand for water resource management in enterprises. In this study, we evaluated the effects of companies’ water-saving reconstruction projects. We used Hina Advanced Materials Company as a case to construct an investment decision model to (1) calculate the internal and external costs of water resources based on circular economic value analysis theory, and (2) locate the level of water resources circulation. We adopted gray situation decision analysis to identify the typical problems that occur in water resource utilization. Moreover, we demonstrated optimization plans for different potential improvements, thereby providing guidance and references for water resource cost management and the comprehensive optimization of environmental benefits. We concluded that the circulation economic value analysis model can effectively display the flow and amount of value derived from water resource flows, thereby providing guidance and suggestions for optimizing water resource flows.


2010 ◽  
Vol 4 (3) ◽  
pp. 357-362 ◽  
Author(s):  
Jing Dai ◽  
Jing Qi ◽  
Jingjing Chi ◽  
Shaoqing Chen ◽  
Jin Yang ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1708 ◽  
Author(s):  
Tao Li ◽  
Sha Qiu ◽  
Shuxin Mao ◽  
Rui Bao ◽  
Hongbing Deng

The accessibility, quantity, and quality of water resources are the basic requirements for guaranteeing water resource security. Research into regional water resource accessibility will contribute to improving regional water resource security and effective water resource management. In this study, we used a water resource accessibility index model considering five spatial factors to evaluate the grid-scale water resource accessibility and constructed the spatial pattern of water resource accessibility in Southwest China. Then, we analyzed the coupling coordination degree between county-level water resource accessibility and eco-socio-economic water demand elements. The water resource accessibility showed obvious regional differences, and the overall trend gradually decreased from Southeast to Northwest. The coupling coordination degree between county-level water resource accessibility and eco-socio-economic water demand elements was between 0.26 and 0.84, and was relatively low overall, whereas the counties (districts) with high coordination, moderate coordination, low coordination, reluctant coordination, and incoordination accounted for 0.92%, 5.31%, 21.06%, 59.71%, and 13.00% of total counties (districts), respectively. Therefore, the Southwest region needs to further strengthen the construction of its agricultural irrigation facilities, protect the water resources, and coordinate the relationship between water resource management and water demand elements to comprehensively guarantee regional sustainable development.


2015 ◽  
Vol 15 (6) ◽  
pp. 1259-1274 ◽  
Author(s):  
Yu-Ting Chang ◽  
Hai-Long Liu ◽  
An-Ming Bao ◽  
Xi Chen ◽  
Ling Wang

Because of rapid economic development and urbanization, water shortage has become a serious problem in the arid region of China. To investigate urban water resource security, the supply demand pressure of water resources and the urban expansion index were analyzed under different developing scenarios in this paper. Based on the economic data of Urumqi, a typical inland city in the arid area, under the present development scenario from 2011 to 2030, a system dynamics model was constructed to simulate the water resource security. The results show that there will be great influence of urban expansion on water resource security in Urumqi in the future. Water resources are projected to become increasingly scarce if the urban expansion is left unchanged in terms of population, economic growth and water-use efficiency. To find a sustainable method for water resource use, four scenarios of urban expansion were set up based on the sensitive variables. Based on comparison of water consumption under the different scenarios, the harmonize scheme for urban water resource security is the best choice for the development of Urumqi. If the impact of urban expansion on urban water resource security alleviates in the future, the main parameters would have to reach a new standard of water use. Reducing the sewage and increasing the reuse proportion of wastewater are also very important for relieving the stress of water shortage. This research can serve as a reference for water resource allocation and urban planning in arid areas.


2016 ◽  
Vol 20 (5) ◽  
pp. 1869-1884 ◽  
Author(s):  
Claire L. Walsh ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler ◽  
Aidan Burton ◽  
Richard J. Dawson ◽  
...  

Abstract. Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.


Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


Sign in / Sign up

Export Citation Format

Share Document