scholarly journals High hydrostatic pressure shapes the development and production of secondary metabolites of Mariana Trench sediment fungi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qingqing Peng ◽  
Yongqi Li ◽  
Ludan Deng ◽  
Jiasong Fang ◽  
Xi Yu

AbstractThe hadal biosphere is one of the least understood ecosystems on our planet. Recent studies have revealed diverse and active communities of prokaryotes in hadal sediment. However, there have been few studies on fungi in hadal sediment. Here we report the first isolation and cultivation of 8 fungi from the Mariana Trench sediment. The individual colonies were isolated and identified as Stemphylium sp., Cladosporium sp., Arthrinium sp., Fusarium sp., Alternaria sp., and Aspergillus sp. High hydrostatic pressure (HHP) test was carried out to identify the piezophily of these hadal fungi. Among them, 7 out of the 8 fungal isolates exhibited the ability of germination after incubation under 40 MPa for 7 days. Vegetative growth of the isolates was also affected by HHP. Characterization of secondary metabolites under different pressure conditions was also performed. The production of secondary metabolites was affected by the HHP treatment, improving the potential of discovering novel natural products from hadal fungi. The antibacterial assay revealed the potential of discovering novel natural products. Our results suggest that fungal growth pressure plays an important role in the development and production of secondary metabolites of these hadal fungi under the extreme environment in the Mariana Trench.

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3053
Author(s):  
Jingyi Hao ◽  
Yuqing Lei ◽  
Zhilin Gan ◽  
Wanbin Zhao ◽  
Junyan Shi ◽  
...  

With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.


2018 ◽  
Vol 124 (2) ◽  
pp. 158-172
Author(s):  
Karel Krofta ◽  
Milan Houška ◽  
Alexandr Mikyška ◽  
Pavel Čermák

2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2010 ◽  
Vol 37 (6) ◽  
pp. 641-645 ◽  
Author(s):  
Can-Xin XU ◽  
Chun WANG ◽  
Bing-Yang ZHU ◽  
Zhi-Ping GAO ◽  
Di-Xian LUO ◽  
...  

2019 ◽  
Vol 26 (24) ◽  
pp. 4506-4536 ◽  
Author(s):  
Iris E. Allijn ◽  
René P. Brinkhuis ◽  
Gert Storm ◽  
Raymond M. Schiffelers

Traditionally, natural medicines have been administered as plant extracts, which are composed of a mixture of molecules. The individual molecular species in this mixture may or may not contribute to the overall medicinal effects and some may even oppose the beneficial activity of others. To better control therapeutic effects, studies that characterized specific molecules and describe their individual activity that have been performed over the past decades. These studies appear to underline that natural products are particularly effective as antioxidants and anti-inflammatory agents. In this systematic review we aimed to identify potent anti-inflammatory natural products and relate their efficacy to their chemical structure and physicochemical properties. To identify these compounds, we performed a comprehensive literature search to find those studies, in which a dose-response description and a positive control reference compound was used to benchmark the observed activity. Of the analyzed papers, 7% of initially selected studies met these requirements and were subjected to further analysis. This analysis revealed that most selected natural products indeed appeared to possess anti-inflammatory activities, in particular anti-oxidative properties. In addition, 14% of the natural products outperformed the remaining natural products in all tested assays and are attractive candidates as new anti-inflammatory agents.


2020 ◽  
Vol 25 (46) ◽  
pp. 4893-4913 ◽  
Author(s):  
Fan Cao ◽  
Jie Liu ◽  
Bing-Xian Sha ◽  
Hai-Feng Pan

: Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.


Sign in / Sign up

Export Citation Format

Share Document