scholarly journals A reporter system for enriching CRISPR/Cas9 knockout cells in technically challenging settings like patient models

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Hsin Liu ◽  
Kerstin Völse ◽  
Daniela Senft ◽  
Irmela Jeremias

AbstractCRISPR/Cas9 represents a valuable tool to determine protein function, but technical hurdles limit its use in challenging settings such as cells unable to grow in vitro like primary leukemia cells and xenografts derived thereof (PDX). To enrich CRISPR/Cas9-edited cells, we improved a dual-reporter system and cloned the genomic target sequences of the gene of interest (GOI) upstream of an out-of-frame fluorochrome which was expressed only upon successful gene editing. To reduce rounds of in vivo passaging required for PDX leukemia growth, targets of 17 GOI were cloned in a row, flanked by an improved linker, and PDX cells were lentivirally transduced for stable expression. The reporter enriched scarce, successfully gene-edited PDX cells as high as 80%. Using the reporter, we show that KO of the SRC-family kinase LYN increased the response of PDX cells of B precursor cell ALL towards Vincristine, even upon heterozygous KO, indicating haploinsufficiency. In summary, our reporter system enables enriching KO cells in technically challenging settings and extends the use of gene editing to highly patient-related model systems.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1535 ◽  
Author(s):  
Anastasiya S. Poltavets ◽  
Polina A. Vishnyakova ◽  
Andrey V. Elchaninov ◽  
Gennady T. Sukhikh ◽  
Timur Kh. Fatkhudinov

Macrophages, important cells of innate immunity, are known for their phagocytic activity, capability for antigen presentation, and flexible phenotypes. Macrophages are found in all tissues and therefore represent an attractive therapeutic target for the treatment of diseases of various etiology. Genetic programming of macrophages is an important issue of modern molecular and cellular medicine. The controllable activation of macrophages towards desirable phenotypes in vivo and in vitro will provide effective treatments for a number of inflammatory and proliferative diseases. This review is focused on the methods for specific alteration of gene expression in macrophages, including the controllable promotion of the desired M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes in certain pathologies or model systems. Here we review the strategies of target selection, the methods of vector delivery, and the gene editing approaches used for modification of macrophages.


2019 ◽  
Author(s):  
Eleanor R. Martin ◽  
Alessandro Barbieri ◽  
Robert C. Ford ◽  
Robert C. Robinson

AbstractCrystallisation of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under non-physiological extremes of protein, salt, and H+ concentrations. Here, we describe the development of the robust iBox-PAK4cat system that spontaneously crystallises in several mammalian cell types. The developments described here allow the quantitation of in-vivo protein-protein interactions using a novel GFP-linked reporter system. Here, we have combined this assay with in-vitro X-ray crystallography and molecular dynamics studies characterise the molecular determinants of the interaction between NHERF1 PDZ2 and CFTR, a protein complex pertinent to the genetic disease cystic fibrosis. These studies have revealed the crystal structure of the extended PDZ domain of NHERF1, and indicated, contrary to previous reports, that residue selection at −1 and −3 PDZ-binding motif positions influence the affinity and specificity of the interaction. The results presented here demonstrate that the iBox-PAK4cat assay could easily be utilised to screen other protein-protein interactions.


2019 ◽  
Author(s):  
Yagiz Alp Aksoy ◽  
Wenjie Chen ◽  
Ewa M Goldys ◽  
Wei Deng

ABSTRACTThe CRISPR-Cas9 and related systems offer a unique genome editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with CRISPR/Cas9 system. We demonstrated its high transfection efficiency, by assessing the targeted knockout of eGFP gene in human HEK293 cells (52.8% knockout). We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). To the best of our knowledge we reported the first proof-of-concept of spatio-temporal control of CRISPR/Cas9 by using light-triggered liposomes in both in vitro and in vivo environment.


2020 ◽  
Author(s):  
José M. Uribe-Salazar ◽  
Aadithya Sekar ◽  
Gulhan Kaya ◽  
KaeChandra Weyenberg ◽  
Cole Ingamells ◽  
...  

ABSTRACTZebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create ‘knockout’ models. Due to the large number of available tools to design CRISPR assays and diversity of theories/model systems they were originally built on, we sought to systematically compare computational and empirical approaches for predicting gene-editing efficacy in zebrafish. We subjected zebrafish embryos to CRISPR/Cas9 with 50 different guide RNAs (gRNAs) targeting 14 genes and assayed individual editing efficiencies. We compared our experimental in vivo efficiencies in mosaic G0 embryos with those predicted by seven commonly used gRNA design tools and found large discrepancies between methods. Assessing off-target mutations (predicted in silico and in vitro) found that the majority of tested loci had low in vivo frequencies (<1%). Moreover, understanding that recent segmental duplications in the zebrafish genome could exacerbate CRISPR targeting of individual genes, we cataloged these loci and have made them available as a resource. Lastly, we assessed the transcriptome of negative ‘mock’ control CRISPR larvae injected with Cas9 enzyme or mRNA with no gRNA using RNA-seq and identified differentially expressed genes with high variability between injections. Using these same data, we discovered on average ~60 putative somatic mosaic frameshift mutations impacting genes per pool of injected larvae, potentially due to background cutting of DNA with Cas9 in the absence of gRNA. To verify this previously unreported phenomenon in zebrafish, we validated seven of twelve genes tested carrying low frequency mosaic somatic mutations in the genomes of a separate batch of injected larvae. These results suggest that negative control embryos may carry mutations within genes leading to spurious phenotypes. Overall, our results provide a valuable resource for the zebrafish community for the design and execution of CRISPR/Cas9 experiments.AUTHOR SUMMARYZebrafish have proven to be a powerful model organism for the functional characterization of genes. Development of new workflows targeting individual or multiple genes simultaneously require a thorough understanding of the advantages and limitations of current available methods for CRISPR-editing in zebrafish. Here, we systematically evaluated on- and off-target efficiencies prediction methods of 50 gRNAs by experimentally testing their CRISPR cutting efficiencies in embryos. Moreover, we performed a global assessment of duplicated portions of the zebrafish genome, providing a powerful resource for the design of future CRISPR assays. Lastly, we evaluated the possibility that spurious editing occurs in samples injected with the Cas9 nuclease without a gRNA, which are commonly used as a baseline control. This analysis revealed high variability in gene expression and the presence of frameshift variants in larvae injected solely with Cas9, suggesting that additional caution should be taken when using these samples as baseline controls in functional characterizations of genes.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2021 ◽  
Vol 52 ◽  
pp. 102206
Author(s):  
Alexandra Haase ◽  
Tim Kohrn ◽  
Veronika Fricke ◽  
Maria Elena Ricci Signorini ◽  
Merlin Witte ◽  
...  

CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 162S-164S ◽  
Author(s):  
Stephen P. Peters ◽  
Robert M. Naclerio ◽  
Alkis Togias ◽  
Robert P. Schleimer ◽  
Donald W. MacGlashan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanjali Bhattacharya ◽  
Trupti N. Patel

AbstractPlant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.


Sign in / Sign up

Export Citation Format

Share Document