scholarly journals Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madhuri Shende Warkad ◽  
Chea-Ha Kim ◽  
Beom-Goo Kang ◽  
Soo-Hyun Park ◽  
Jun-Sub Jung ◽  
...  

AbstractMetformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts. Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells. Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD levels in HDF, but not in AsPC-1 cells. p-AMPK and p-FOXO3a also translocated from the cytosol to the nucleus by metformin in HDF, but not in AsPC-1 cells. Transfection of si-FOXO3a in HDF increased ROS levels, while wt-FOXO3a-transfected AsPC-1 cells decreased ROS levels. Metformin combined with apigenin increased ROS levels dramatically and decreased cell viability in various cancer cells including AsPC-1 cells, with each drug used singly having a minimal effect. Metformin/apigenin combination synergistically decreased mitochondrial membrane potential in AsPC-1 cells but to a lesser extent in HDF cells. Metformin/apigenin combination in AsPC-1 cells increased DNA damage-, apoptosis-, autophagy- and necroptosis-related factors, but not in HDF cells. Oral administration with metformin/apigenin caused dramatic blocks tumor size in AsPC-1-xenografted nude mice. Our results suggest that metformin in cancer cells differentially regulates cellular ROS levels via AMPK-FOXO3a-MnSOD pathway and combination of metformin/apigenin exerts anticancer activity through DNA damage-induced apoptosis, autophagy and necroptosis by cancer cell-specific ROS amplification.

Author(s):  
Li-Chao Yao ◽  
Lun Wu ◽  
Wei Wang ◽  
Lu-Lu Zhai ◽  
Lin Ye ◽  
...  

Background:: Panax Notoginseng Saponins (PNS) is used as traditional Chinese medicine for ischemic stroke and cardiovascular disease, it has been proven to possess anticancer activity recently. Objective:: In this study, we aimed to explore the anticancer curative effect and potential mechanisms of PNS in pancreatic cancer cells. Methods:: Pancreatic cancer Miapaca2 and PANC-1 cells were treated with PNS and Gemcitabine (Gem), respectively. Then the cell viability was assessed by CCK-8 assay, cell proliferation was tested by colony formation assay and EdU cell proliferation assay, cell migration and invasiveness were tested by wound healing assay and transwell assay respectively, and cell apoptosis was detected by flow cytometry. Finally, we detected the expression levels of proteins related to migration, apoptosis and autophagy through Western blotting. Results:: PNS not only inhibited the proliferation, migration, invasion and autophagy of Miapaca2 and PANC-1 cells, but also induced apoptosis and promoted chemosensitivity of pancreatic cancer cells to Gem. Conclusion:: PNS may exhibit cytotoxicity and increase chemosensitivity of pancreatic cancer cells to Gem by inhibiting autophagy and inducing apoptosis, providing a new strategy and potential treatment option for pancreatic cancer.


2020 ◽  
Vol 20 (4) ◽  
pp. 504-517
Author(s):  
Yu-Lan Li ◽  
Xin-Li Gan ◽  
Rong-Ping Zhu ◽  
Xuehong Wang ◽  
Duan-Fang Liao ◽  
...  

Objective: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. Methods: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. Results: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. Conclusion: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


2013 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Xiaoshu Li ◽  
Jun Yan ◽  
Lisheng Wang ◽  
Fengjun Xiao ◽  
Yuefeng Yang ◽  
...  

Author(s):  
Md Akram Hossain ◽  
Yunfeng Lin ◽  
Garrett Driscoll ◽  
Jia Li ◽  
Anne McMahon ◽  
...  

The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3′-5′ exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.


Author(s):  
Kelvin F. Pratama ◽  
Muhammad Fauzi ◽  
Aliya Nur Hasanah

The biggest case of death in 2018 is caused by lung cancer. Non-small cell lung cancer (NSCLC) is most common. One of the cause lung cancer is the over expression of EGFR. Erlotinib is the first line of anticancer for NSCLC with EGFR mutations. However, erlotinib can cause side effects such as liver damage therefore new safe anticancer is needed. Trigonelline is an alkaloid compound from coffee beans that had anticancer activity in pancreatic cancer cells by inhibiting Nrf2 in vitro and in vivo at concentrations of 0.1-1 µM. Development of cancer cells by Nrf2 is regulated by EGFR. In this study screening and modification of trigonelline structure was carried out to obtain compounds that have anticancer activity on NSCLC against EGFR computationally. The research procedures carried out are modification of ten trigonelline derived structures, the molecular docking and prediction of physicochemical profiles from trigonelline and its modification also their ADMET. Based on results, KF9 has the lowest free energy of binding which was -8,88 kcal/mol and binds to Met769 which has biological activity with receptor. KF9 has good physiochemical profile and absorption, distribution, also toxicity parameters. KF9 has potential to become a new anticancer drug for NSCLC.Keywords: Coffee, Drug discovery and Drug development, Molecular structure modification, Nonsmall cell lung cancer, Trigonelline


Sign in / Sign up

Export Citation Format

Share Document