scholarly journals Transcriptome profiling reveals potential genes involved in browning of fresh-cut eggplant (Solanum melongena L.)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaohui Liu ◽  
Aidong Zhang ◽  
Jie Zhao ◽  
Jing Shang ◽  
Zongwen Zhu ◽  
...  

AbstractFresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the product appearance and impacts their nutrition. We used RNA-sequencing to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant fruit samples from both browning-sensitive and browning-resistant cultivars to investigate the molecular mechanisms involved in browning. A total of 8347 differentially expressed genes were identified, of which 62 genes were from six gene families (i.e., PPO, PAL, POD, CAT, APX, and GST) potentially associated with enzymatic browning. Furthermore, using qRT-PCR, we verified 231 differentially regulated transcription factors in fresh-cut eggplant fruits. The enzyme activities of PPO, POD, PAL, and CAT in ‘36’ were significantly higher than those of ‘F’ fresh-cut for 15 min. Both PPO and POD play a major role in the browning of eggplant pulp and might therefore act synergistically in the browning process. Meanwhile, qPCR results of 18 browning related genes randomly screened in 15 eggplant materials with different browning tolerance showed variant-specific expression of genes. Lastly, gene regulatory networks were constructed to identify the browning-related genes. This work provides a basis for future molecular studies of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.

2020 ◽  
Author(s):  
Xiaohui Liu ◽  
Jing Shang ◽  
Aidong Zhang ◽  
Zongwen Zhu ◽  
Dingshi Zha ◽  
...  

Abstract Background: Fresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the appearance of products and impacts their nutrition. We used the RNA-Seq technique to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant (Solanum melongena L.) fruit samples from a browning-sensitive cultivar and a browning-resistant cultivar to investigate the genes and molecular mechanisms involved in browning. Results: A total of 111.55 GB of high-quality reads were generated, the genomes of each sample were compared, and 83.50%–95.14% of the data was mapped to the eggplant reference genome. Furthermore, a total of 19631 differentially expressed genes were identified, among which 12 genes and two WRKY transcription factors were identified as potentially involved in enzymatic browning in fresh-cut eggplant fruit. Moreover, the 14 differentially expressed genes associated with browning were verified using qRT-PCR. Conclusions: Several genes associated with phenolic oxidation, phenylpropanoid biosynthesis, and flavonoid biosynthesis were found to be differentially regulated between the eggplant cultivars with different browning sensitivities. This work is of great theoretical significance, as it provides a basis for future molecular studies and improvement of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.


2020 ◽  
Author(s):  
Xiaohui Liu ◽  
Shengmei Zhang ◽  
Jing Shang ◽  
Aidong Zhang ◽  
Zongwen Zhu ◽  
...  

Abstract Objective : Fresh-cut fruits and vegetables is an emerging type of fruits and vegetables processing products for consumers to eat immediately or for the catering industry. Enzymatic browning is one of the crucial problems compromising the flavor and texture of fresh-cut fruit and vegetables. Eggplant is a common vegetable, which is favored by consumers. Accordingly, we used an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) to explore the browning mechanism in peeled eggplant ( Solanum melongena L . ). Results: Metabolomics revealed several hundred differential metabolites, including lipids, phenols, sugars and fatty acids. The content of these metabolites changed dynamically as the peeled time increased. The content of polyphenols, especially chlorogenic acid, increased significantly, suggesting that the main substrate for enzymatic browning in eggplant is chlorogenic acid. Furthermore, all the differential metabolite were mapped to KEGG pathway, revealing significant differences in linoleic acid metabolism, tyrosine metabolism,glutathione metabolism, pentose phosphate pathway, tropane, piperidine and pyridine alkaloid biosynthesis, phenylpropanol metabolism and glycosylphosphatidylinositol(GPI)-anchor biosynthesis over time. Therefore, we speculate that some metabolic pathways that are closely connected with respiration, glycolysis, ATP synthesis, and phenolic synthesi are disturbed after peeling, under the action of enzymes, eventually leading to browning.


2019 ◽  
Author(s):  
Xiaohui Liu ◽  
Shengmei Zhang ◽  
Jing Shang ◽  
Aidong Zhang ◽  
Zongwen Zhu ◽  
...  

Abstract Background: Fresh-cut fruits and vegetables is a emerging type of fruits and vegetables processing products for consumers to eat immediately or for the catering industry. Enzymatic browning is one of the crucial problems compromising the flavor and texture of fresh-cut fruit and vegetables. Eggplant is a common vegetable, which is favored by consumers. Accordingly, we used an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) to explore the browning mechanism in peeled eggplant ( Solanum melongena L . ). Results: Metabolomics revealed several hundred differential metabolites, including lipids, phenols, sugars and fatty acids. The content of these metabolites changed dynamically as the peeled time increased. The content of polyphenols, especially chlorogenic acid, increased significantly, suggesting that the main substrate for enzymatic browning in eggplant is chlorogenic acid. Furthermore, all the differential metabolite were mapped to KEGG pathway, revealing significant differences in linoleic acid metabolism, tyrosine metabolism ,glutathione metabolism, pentose phosphate pathway, tropane, piperidine and pyridine alkaloid biosynthesis, phenylpropanol metabolism and glycosylphosphatidylinositol(GPI)-anchor biosynthesis over time. Therefore, we speculate that some metabolic pathways that are closely connected with respiration, glycolysis, ATP synthesis, and phenolic synthesi are disturbed after peeling, under the action of enzymes, eventually leading to browning. Conclusions: We established an untargeted metabolomics method based on LC-MS technology to explain the mechanism of eggplant browning, which may lay the foundation for better understanding the mechanism of browning during the fruits and vegetables deeply processing, and furnish new ideas and perspectives for understanding fruit and vegetable browning in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaohui Liu ◽  
Aidong Zhang ◽  
Jing Shang ◽  
Zongwen Zhu ◽  
Ye Li ◽  
...  

AbstractEnzymatic browning is one of the crucial problems compromising the flavor and texture of fresh-cut fruit and vegetables. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC–MS) was used to explore the browning mechanism in fresh-cut eggplant. Metabolomics studies showed that with the increase of fresh-cut time, the contents of 946 metabolites changed dynamically. The metabolites having the same trend share common metabolic pathways. As an important browning substrate, the content of chlorogenic acid increased significantly, suggesting that may be more important to fresh-cut eggplant browning; all 119 common differential metabolites in 5 min/CK and 3 min/CK contrastive groups were mapped onto 31 KEGG pathways including phenylpropanol metabolism, glutathione metabolism pathway, et al. In physiological experiments, results showed that the Phenylpropanoid-Metabolism-Related enzymes (PAL, C4H, 4CL) were changed after fresh-cut treatment, the activities of three enzymes increased first and then decreased, and reached the maximum value at 5 min, indicating the accumulation of phenolic substances. At the same time, ROS were accumulated when plant tissue damaged by cutting, the activities of related antioxidant enzymes (SOD, APX and CAT) changed dynamically after oxidative damage. SOD and APX content increased significantly and reached the maximum value at 10 min after cutting, and then showed a downward trend. However, CAT activity increased sharply and reached the maximum value within 3 min after cutting, then maintained the same activity, and showed a downward trend after 30 min. These data fully demonstrated that the activities of browning related enzymes and gene expression increased with the prolonging of fresh cutting time. We explained the browning mechanism of fresh-cut eggplant by combining metabolomics and physiology, which may lay the foundation for better understanding the mechanism of browning during the fruits and vegetables during processing.


2006 ◽  
Vol 69 (10) ◽  
pp. 2524-2528 ◽  
Author(s):  
GILLIAN A. FRANCIS ◽  
DAVID O'BEIRNE

The incidence of Listeria monocytogenes in modified atmosphere packaged fresh-cut fruits and vegetables from chill cabinets of a supermarket in Ireland was investigated over a 2-year period. Overall, 9.58% of fresh-cut produce was contaminated with Listeria spp. Various species of Listeria were isolated from samples, including L. monocytogenes, L. seeligeri, L. innocua, L. welshimeri, and L. ivanovii. No fruit samples contained detectable L. monocytogenes. Overall, a total of 21 L. monocytogenes isolates (2.9% of samples) were recovered from a range of products, including dry coleslaw mix (80% shredded cabbage and 20% shredded carrot), bean sprouts, and leafy vegetables such iceberg, romaine, and radicchio lettuce and mixed salad leaves (curly endive, escarole, and radicchio leaves). Dry coleslaw mix appeared to have the highest incidence of Listeria contamination (20%) compared with other products. Listeria contamination was more frequent (P < 0.05) during the summer and autumn months than during the winter and spring months. The 21 L. monocytogenes isolates were subsequently subtyped by genomic macrorestriction techniques using ApaI with pulsed-field gel electrophoresis (PFGE). PFGE of digested DNA produced bands of 79 to 518 kb. Four PFGE profiles were identified, and approximately 50% of the isolates were associated with profile 1. This study indicates that fresh-cut vegetables packaged under a modified atmosphere can support growth of numerous species of Listeria, including L. monocytogenes.


2020 ◽  
Vol 9 (12) ◽  
pp. e7191210799
Author(s):  
Lucas Henrique Maldonado-Silva ◽  
Bianka Rocha Saraiva ◽  
Ana Carolina Pelaes Vital ◽  
Fernando Antônio Anjo ◽  
Rafael Santiago Trautwein ◽  
...  

Fruits and vegetables are an important part of a healthy and balanced diet. Fresh cut fruits consumption is increasing, however keeping the food quality when processed is a challenge for the food industry. When the food is processed, some enzymatic changes can occur, being that enzymatic browning is one of this important degradation suffered by fresh cut apples. One alternative to reduce the enzymatic browning is the use of edible coating with anti browning components as vegetal extracts rich in phenolic compounds. The aim of this paper was characterize Uvaia (Eugenia pyriformis Cambess) leaf extract, evaluate the effect of sodium alginate edible coating formulated with uvaia leaf extract against enzymatic browning in fresh cut apples (cv. Golden Delicious and Royal Gala) during 8 days of storage. Phenolic compounds as chlorogenic acid, caffeic acid and p-coumaric acid were identified in Uvaia methanolic leaf extract. Uvaia aqueous leaf extract presented ABTS IC50 of 0.77 ± 0.002 mg/mL, increasing 40.66% the edible coating antioxidant activity. Uvaia aqueous leaf extract controlled 80% of polyphenol oxidase activity from Golden Delicious apple and edible coating with extract reduced enzymatic browning. Sodium alginate edible coating with Uvaia aqueous leaf extract is an alternative to reduced enzymatic browning of fresh cut apple (cv. Golden Delicious).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuchao Yang ◽  
Wenbo Li ◽  
Jing Tao ◽  
Shixiang Zong

AbstractOlfaction plays key roles in insect survival and reproduction, such as feeding, courtship, mating, and oviposition. The olfactory-based control strategies have been developed an important means for pest management. Streltzoviella insularis is a destructive insect pest of many street tree species, and characterization of its olfactory proteins could provide targets for the disruption of their odour recognition processes and for urban forestry protection. In this study, we assembled the antennal transcriptome of S. insularis by next-generation sequencing and annotated the main olfactory multi-gene families, including 28 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 56 odorant receptors (ORs), 11 ionotropic receptors (IRs), two sensory neuron membrane proteins (SNMPs), and 101 odorant-degrading enzymes (ODEs). Sequence and phylogenetic analyses confirmed the characteristics of these proteins. We further detected tissue- and sex-specific expression patterns of OBPs, CSPs and SNMPs by quantitative real time-PCR. Most OBPs were highly and differentially expressed in the antennae of both sexes. SinsCSP10 was expressed more highly in male antennae than in other tissues. Two SNMPs were highly expressed in the antennae, with no significant difference in expression between the sexes. Our results lay a solid foundation for understanding the precise molecular mechanisms underlying S. insularis odour recognition.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 502
Author(s):  
Jing Fan ◽  
Wei Du ◽  
Qi-Liang Chen ◽  
Jing-Guo Zhang ◽  
Xiao-Ping Yang ◽  
...  

Pear (Pyrus spp.) is one of the most commonly consumed temperate fruits, having considerable economic and health importance. Fresh-cut or processed pear fruits are prone to browning because of the abundant phenolic compounds; however, little is known about the molecular mechanisms underlying enzymatic browning of fresh-cut sand pear fruit. In this study, fruits of two sand pear genotypes (low browning cultivar ‘Eli No.2′ and high browning cultivar ‘Weiningdahuangli’) were used to analyze the molecular mechanism of enzymatic browning by SMRT-seq and RNA-seq. The results generated 69,122 consensus isoforms, 21,336 new transcripts, 7105 alternative splicing events, and 254 long non-coding RNAs (lncRNAs). Furthermore, five genes related to enzymatic browning were predicted to be targets of six lncRNAs, and 9930 differentially expressed genes (DEGs) were identified between two different flesh browning cultivars. Meanwhile, most DEGs (e.g., PAL, 4CL, CAD, CCR, CHS, and LAR) involved in the phenylpropanoid biosynthesis pathway were up-regulated, and the expression of PPO and POD were highly expressed in the high-browning cultivar. Interestingly, the transcript level of PbrPPO4 (Pbr000321.4) was significantly higher than other PPO and POD genes, and a high level of total polyphenol and PPO activity were observed in the high browning cultivar. We found that the expression of lncRNA PB.156.1 was significantly positively correlated with the target gene PbrPPO4 (Pbr000321.4). The results suggest that PbrPPO4 might act as a major contributor and a key enzyme encoding gene in regulating fresh-cut sand pear fruit enzymatic browning; the expression of PbrPPO4 was probably regulated by lncRNA PB.156.1. Altogether, the transcriptomic and physiological analyses expand the knowledge of sand pear flesh enzymatic browning at the molecular level and provide a foundation for germplasm resources for molecular breeding of high polyphenol and low browning cultivars in sand pears.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Adam Pym ◽  
Kumar Saurabh Singh ◽  
Åsa Nordgren ◽  
T. G. Emyr Davies ◽  
Christoph T. Zimmer ◽  
...  

Abstract Background The glasshouse whitefly, Trialeurodes vaporariorum, is a damaging crop pest and an invasive generalist capable of feeding on a broad range of host plants. As such this species has evolved mechanisms to circumvent the wide spectrum of anti-herbivore allelochemicals produced by its host range. T. vaporariorum has also demonstrated a remarkable ability to evolve resistance to many of the synthetic insecticides used for control. Results To gain insight into the molecular mechanisms that underpin the polyphagy of T. vaporariorum and its resistance to natural and synthetic xenobiotics, we sequenced and assembled a reference genome for this species. Curation of genes putatively involved in the detoxification of natural and synthetic xenobiotics revealed a marked reduction in specific gene families between this species and another generalist whitefly, Bemisia tabaci. Transcriptome profiling of T. vaporariorum upon transfer to a range of different host plants revealed profound differences in the transcriptional response to more or less challenging hosts. Large scale changes in gene expression (> 20% of genes) were observed during adaptation to challenging hosts with a range of genes involved in gene regulation, signalling, and detoxification differentially expressed. Remarkably, these changes in gene expression were associated with significant shifts in the tolerance of host-adapted T. vaporariorum lines to natural and synthetic insecticides. Conclusions Our findings provide further insights into the ability of polyphagous insects to extensively reprogram gene expression during host adaptation and illustrate the potential implications of this on their sensitivity to synthetic insecticides.


Author(s):  
Yapi Jocelyn Constant ◽  
Deffan Zranseu Ange Bénédicte ◽  
Fagbohoun Jean Bedel ◽  
Kouame Lucien Patrice

Background: The polyphenol oxidase (PPO) responsible for the enzymatic browning of fruits and vegetables, has been involved in the undesirable brown discolouration of food products that resulted in negative effects on colour, taste, and nutritional value. This is a generally undesired process and needs to be prevented in food technology. Objective: The present work was carried out to evaluate the effect of chemical and thermal treatments on browning inhibition of eggplant fruit (Solanum melongena L.). Materials and Methods: A screening of PPOs activities from eggplant was carried out. The physicochemical characteristics and thermal stability of main PPOs activities were determined in order to develop methods of anti-browning. Results: Dopamine oxidase and pyrocatechol oxidase activities were the most active main eggplant fruit PPO activities. Maximal PPO activity was found at 30°C, pH 7.0 for dopamine and 25°C, pH 6.6 for pyrocatechol. The enzymes were stable and retained almost all of their catalytic activity at their optimum temperature (30 and 25°C) for 120 min and their pH stability was in the range of 5.0 - 7.0. Polyphenol oxidases (dopamine oxidase and pyrocatechol oxidase) remained their full activity in the presence of ion Na+, Cu2+, Pb2+ (1 mM) but were inhibited strongly by the ion Fe2+ and Pb2+ (5 mM). On the other hand, the ion K+, Ba2+ and chemical agents, EDTA, citric acid have virtually no effect on dopamine oxidase and pyrocatechol oxidase activities. Energy for inactivation (Ea) obtained using dopamine and pyrocatechol were 30.8 kJ/mol and 7.1 kJ/mol from respective substrates. Conclusion: Ascorbic acid was a better inhibitor where 82.32% of PPOs inhibition was achieved. At 65°C, their D-values ranged from 44.72 to 72.72 min. Hence, heat treatment at 65°C for 30 min reduced browning of eggplant fruit. These data regarding the properties of PPO should enhance understanding of the browning reaction in eggplant and lead to the development of techniques for controlling this undesirable process.


Sign in / Sign up

Export Citation Format

Share Document