scholarly journals Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyewon Oh ◽  
Arom Choi ◽  
Nieun Seo ◽  
Joon Seok Lim ◽  
Je Sung You ◽  
...  

AbstractPost contrast-acute kidney injury (PC-AKI) is defined as the deterioration of renal function after administration of iodinated contrast media. HMGB1 is known to play an important role in the development of acute kidney injury. The purpose of this study was to investigate the association between HMGB1 and PC-AKI and the protective effect of glycyrrhizin, a direct inhibitor of HMGB1, in rats. Rats were divided into three groups: control, PC-AKI and PC-AKI with glycyrrhizin. Oxidative stress was measured with MDA levels and H2DCFDA fluorescence intensity. The mRNA expressions of pro-inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α) and kidney injury markers (KIM-1, NGAL and IL-18) were assessed using RT-PCR and ELISA in kidney tissue. In addition, the serum and intracellular protein levels of HMGB1were analyzed with the enzyme-linked immunosorbent assay (ELISA) and western blotting. Histologic changes were assessed with H&E staining using the transmission electron microscope (TEM). Moreover, serum creatinine (SCr), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) levels were assessed. Oxidative stress, pro-inflammatory cytokines, kidney injury markers and LDH were significantly higher in PC-AKI compared to the controls, but were lower in PC-AKI with glycyrrhizin. Intracellular and serum HMGB1 levels significantly increased after contrast media exposure, whereas they markedly decreased after glycyrrhizin pretreatment. SCr and BUN also decreased in PC-AKI with glycyrrhizin compared to PC-AKI. In PC-AKI, we could frequently observe tubular dilatation with H&E staining and cytoplasmic vacuoles on TEM, whereas these findings were attenuated in PC-AKI with glycyrrhizin. Our findings indicate that HMGB1 plays an important role in the development of PC-AKI and that glycyrrhizin has a protective effect against renal injury and dysfunction by inhibiting HMGB1 and reducing oxidative stress.

2020 ◽  
Author(s):  
Hyewon Oh ◽  
Nieun Seo ◽  
Joon Seok Lim ◽  
Je Sung You ◽  
Yong Eun Chung

Abstract Post contrast-acute kidney injury (PC-AKI) is defined as the deterioration of renal function after administration of iodinated contrast media. The purpose of this study was to investigate the association between HMGB1 and PC-AKI and the protective effect of glycyrrhizin, a direct inhibitor of HMGB1, in rats. Rats were divided into three groups: control, PC-AKI and PC-AKI with glycyrrhizin. Oxidative stress, mRNA expressions of pro-inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α) and kidney injury markers (Kim-1, NGAL and IL-18) were assessed. In addition, the serum and intracellular protein levels of HMGB1 were analyzed. Moreover, serum creatinine (SCr), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) levels were assessed. Oxidative stress, pro-inflammatory cytokines, kidney injury markers and LDH were significantly higher in PC-AKI compared to the controls, but were lower in PC-AKI with glycyrrhizin. Intracellular and serum HMGB1 levels significantly increased after contrast media exposure, whereas they markedly decreased after glycyrrhizin pretreatment. SCr and BUN also decreased in PC-AKI with glycyrrhizin compared to PC-AKI. Our findings indicate that HMGB1 plays an important role in the development of PC-AKI and that glycyrrhizin has a protective effect against renal injury and dysfunction by inhibiting HMGB1 and reducing oxidative stress.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 499
Author(s):  
Hao-Hao Shi ◽  
Ying Guo ◽  
Li-Pin Chen ◽  
Cheng-Cheng Wang ◽  
Qing-Rong Huang ◽  
...  

Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing forms of AST in nature are mainly fatty acid-acylated AST monoesters and diesters, as well as unesterified AST, in which DHA is an esterified fatty acid. However, no reports focus on the different bioactivities of unesterified AST, monoesters and diesters, as well as the recombination of DHA and unesterified AST on nephrotoxicity. In the present study, vancomycin-treated mice were used to evaluate the effects of DHA-acylated AST monoesters, DHA-acylated AST diesters, unesterified AST, and the recombination of AST and DHA in alleviating nephrotoxicity by determining serum biochemical index, histopathological changes, and the enzyme activity related to oxidative stress. Results found that the intervention of DHA-acylated AST diesters significantly ameliorated kidney dysfunction by decreasing the levels of urea nitrogen and creatinine, alleviating pathological damage and oxidative stress compared to AST monoester, unesterified AST, and the recombination of AST and DHA. Further studies revealed that dietary DHA-acylated AST esters could inhibit the activation of the caspase cascade and MAPKs signaling pathway, and reduce the levels of pro-inflammatory cytokines. These findings indicated that the administration of DHA-acylated AST esters could alleviate vancomycin-induced nephrotoxicity, which represented a potentially novel candidate or therapeutic adjuvant for alleviating acute kidney injury.


Toxicon ◽  
2021 ◽  
Vol 190 ◽  
pp. 31-38
Author(s):  
Aline Diogo Marinho ◽  
João Alison de Moraes Silveira ◽  
Adriano José Maia Chaves Filho ◽  
Antônio Rafael Coelho Jorge ◽  
Francisco Assis Nogueira Júnior ◽  
...  

2021 ◽  
Author(s):  
Weifeng Li ◽  
Qiuxia Huang ◽  
Jinjin Yu ◽  
Jiabao Yu ◽  
Yajie Yang ◽  
...  

Abstract Schisandrin (Sch) is a main bioactive component of Schisandra sphenanthera Rehd.et Wils. It has been reported that Sch could regulate inflammatory disease. This study evaluated the anti-inflammatory and anti-oxidant effects effect of Sch on lipopolysaccharide (LPS)-induced macrophages activation and acute kidney injury mice. Male Kunming mice were intraperitoneally injected with LPS (15 mg/kg) after administration of Sch (12.5, 25, 50 mg/kg) seven days for developing acute kidney injury vivo model. RAW264.7 macrophages were pretreatment Sch (10, 20, 40 µM) and administrated LPS (1 µg/ml) to create an in vitro injury model. ELISA results found that Sch administration reduced the production of inflammatory factors induced by LPS in kidney tissues and RAW264.7 macrophages. It has been observed that Sch alleviated oxidative stress by reducing the levels of reactive oxygen species, myeloperoxidase and malondialdehyde, and increasing the activity of superoxide dismutase and glutathione peroxidase. Hematoxylin-eosin staining data suggested that Sch administration significantly reduced inflammatory cell infiltration and the kidney tissue damage induced by LPS. The blood urea nitrogen and creatinine levels were also reduced by Sch treatment. In addition, Western blot and immunohistochemical analysis showed that Sch up-regulated the expression of Nrf2 and HO-1, and decreased the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65 and TLR4. The current research showed that Sch reduced LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress, and provided insights into potential ways to treat AKI.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jufitriani Ismy ◽  
Maimun Syukri ◽  
Dessy R. Emril ◽  
Nanan Sekarwana ◽  
Jufriady Ismy ◽  
...  

Sepsis is one of the leading causes contributing to the incidence of acute kidney injury (AKI). Oxidative stress can be used as the main approach against sepsis-induced AKI. One of the primary antioxidants that plays a role in warding off oxidative stress is superoxide dismutase (SOD). This research aimed to observe the effect of antioxidant SOD in inhibiting sepsis in AKI based on kidney tissue histopathology. The research method was an experimental laboratory with a post-test-only control group design. Twenty-five adult male rats aged 12–16 weeks, weighing between 200 and 250 g, were randomly divided into five groups: Group I, as a positive control, where rats were injected with lipopolysaccharides (LPS); Group II, as a negative control; Group III, as treatment 1, where rats were injected with LPS and administered orally with SOD (Glisodin®) 250 IU daily; Group IV, as treatment 2, where rats were injected with LPS and administered orally with SOD (Glisodin®) 500 IU daily; and Group V, as treatment 2, where rats were injected with LPS and administered orally with SOD (Glisodin®) 1000 IU daily. Rats were administered with SOD (Glisodin®) by oral gavage with a flexible feeding tube for 16 weeks, given once daily in the morning, and then injected with LPS of 10 mg/kg body weight. Glisodin SOD had a significant effect on murine sepsis score (MSS). MSS influenced the tubular injury score linearly. We conclude that the optimal dose of SOD at 1000 IU for inhibiting sepsis-induced AKI incidence is compared to SOD at a dose of 250 and 500 IU. The antioxidant effect of SOD can prevent sepsis-induced AKI with oxidative stress events.


2018 ◽  
Vol 40 (5) ◽  
pp. 423-429 ◽  
Author(s):  
Ali-Mohammad Rousta ◽  
Seyed-Mohamad-Sadegh Mirahmadi ◽  
Alireza Shahmohammadi ◽  
Davood Nourabadi ◽  
Mohammad-Reza Khajevand-Khazaei ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Siqi Xu ◽  
Youguang Gao ◽  
Qin Zhang ◽  
Siwei Wei ◽  
Zhongqing Chen ◽  
...  

Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI.


Sign in / Sign up

Export Citation Format

Share Document