scholarly journals Enhancement of phenolics content and biological activities of longan (Dimocarpus longan Lour.) treated with thermal and ageing process

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Preaploy Hong-in ◽  
Waranya Neimkhum ◽  
Chanun Punyoyai ◽  
Suwannee Sriyab ◽  
Wantida Chaiyana

AbstractThis study is the first to compare the chemical compositions and biological activities of a conventional dried Dimocarpus longan with a novel black D. longan that underwent a thermal ageing process. Pericarp, aril, and seed of both D. longan were macerated in 95% v/v ethanol. Their chemical compositions were investigated using a Folin–Ciocalteu assay, aluminum chloride assay, and high-performance liquid chromatography. Antioxidant activities were evaluated in terms of radical scavenging and iron (III) reduction capacity. An enzyme inhibition assay was used to evaluate the hyaluronidase inhibition. Inflammatory cytokine secretion was evaluated with an enzyme-linked immunosorbent assay. After being exposed to a heating and ageing procedure, gallic acid and ellagic acid content were increased tenfold, while the corilagin content was doubled. Black D. longan seed extract was the most potent anti-hyaluronidase and antioxidant with the strongest free radical scavenging and reduction power, while black D. longan aril extract resulted in the highest inhibition of inflammatory cytokine secretion. Black D. longan contained more biologically active compounds and possessed more potent biological activities than conventional dried D. longan. Therefore, thermal ageing treatment is suggested for producing black D. longan, for which seed extract is suggested as a cosmeceutical active ingredient and aril extract for anti-inflammation.

2021 ◽  
Author(s):  
Preaploy Hong-in ◽  
Waranya Neimkhum ◽  
Chanun Punyoyai ◽  
Suwannee Sri ◽  
Wantida Chaiyana

Abstract This study is the first to successfully produce novel black Dimocarpus longan by undergoing thermal and ageing process. Pericarp, aril, and seed of black D. longan were macerated in 95% v/v ethanol. Their chemical compositions were investigated by Folin–Ciocalteu assay, aluminium chloride assay, and high-performance liquid chromatography. Antioxidant activities were evaluated in terms of radical scavenging and iron (III) reducing capacity. Enzyme inhibitory assay was used to evaluate the hyaluronidase inhibition. Black D. longan seed extract contained the significantly highest content of flavonoids and phenolic compounds (p < 0.05). Each gram of the extract contained 53.6 ± 0.9 mg of gallic acid, 19.8 ± 2.9 mg of corilagin, and 24.5 ± 0.7 mg of ellagic acid. This extract was the most potent anti-hyaluronidase and antioxidant with the strongest free radical scavenging activity and reducing power. Therefore, it was proposed as functional food and further used in the pharmaceutical or cosmeceutical industries.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1876 ◽  
Author(s):  
Yusuf Andriana ◽  
Tran Dang Xuan ◽  
Tran Ngoc Quy ◽  
Hoang-Dung Tran ◽  
Quang-Tri Le

In this study, we evaluated antioxidant, antihyperuricemic, and herbicidal activities of essential oils (EOs) from Piper cubeba Bojer and Piper nigrum L.; two pepper species widely distributed in tropics, and examined their chemical compositions. Dried berries of P. cubeba and P. nigrum were hydro-distilled to yield essential oil (EO) of 1.23 and 1.11% dry weight, respectively. In the antioxidant assay, the radical scavenging capacities of P. cubeba EO against DPPH and ABTS free radicals were 28.69 and 24.13% greater than P. nigrum, respectively. In the antihyperuricemic activity, P. cubeba EO also exhibited stronger inhibitory effects on xanthine oxidase (IC50 = 54.87 µg/mL) than P. nigrum EO (IC50 = 77.11 µg/mL). In the herbicidal activity, P. cubeba EO showed greater inhibition on germination and growth of Bidens pilosa and Echinochloa crus-galli than P. nigrum EO. Besides, P. cubeba EO decreased 15.98–73.00% of photosynthesis pigments of B. pilosa and E. crus-galli, while electrolyte leakages, lipid peroxidations, prolines, phenolics, and flavonoids contents were increased 10.82–80.82% at 1.93 mg/mL dose. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses revealed that P. nigrum and P. cubeba EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. Terpinen-4-ol (42.41%), α-copaene (20.04%), and γ-elemene (17.68%) were the major components of P. cubeba EO, whereas β-caryophyllene (51.12%) and β-thujene (20.58%) were the dominant components of P. nigrum EO. Findings of this study suggest both P. cubeba and P. nigrum EOs were potential to treat antioxidative stress and antihyperuricemic related diseases. In addition, the EOs of the two plants may be useful to control B. pilosa and E. crus-galli, the two invasive and problematic weeds in agriculture practice.


2019 ◽  
Vol 17 (1) ◽  
pp. 422-428 ◽  
Author(s):  
Hanoch Julianus Sohilait ◽  
Healthy Kainama

AbstractEssential oil from Eugenia caryophylata was normally used to heal many different deseaces. Various chemical compositions of essential oil distilled and steamed of Moluccas Eugenia caryophylata has been investigated by many different researchers. Even though an intensive research has been carried out of the local chemotypes, a very detail study has not been fully investigated to find out the complete chemical compounds from the plant essential oil and its content associated with their biological activities. In present paper, we assess the free radical scavenging of E. caryophylata collected from Moluccas islands, Indonesia. Essential oil was extracted from leaves, buds, and stems of plant by steam distillation and analyzed using GC-FID and GC-MS. The result showed that free radical activity of essential oil, main constituent and its derivatives were analized using in vitro method. Essential oil activity from stem obtained as (0.82±0.15 μg/mL) was higher than that from bud and leaf possessing both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2’-azino-bis-3-ethylbenzthizoline-6-sulphonic acid (ABTS) radical scavenging assays by sinergism of eugenol, eugenyl acetate, β-caryophylene and humulene. The activity of isoeugenol (2) (3.59±0.54 μM) and (5.0±0.53 µM) scavenging DPPH and ABTS, respectively, as derivatives eugenol was higher than (3), (4) and (5). Although (6) was active originally, it was inactive after conversion of the ester. While the change of the double bond of location to conjungation structure caused more activity scavenging radicals than the starting molecule.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


2014 ◽  
pp. 98-101
Author(s):  
Thi Bich Hien Le ◽  
Viet Duc Ho ◽  
Thi Hoai Nguyen

Nowadays, cancer treatment has been a big challenge to healthcare systems. Most of clinical anti-cancer therapies are toxic and cause adverse effects to human body. Therefore, current trend in science is seeking and screening of natural compounds which possess antineoplastic activities to utilize in treatment. Uvaria L. - Annonaceae includes approximately 175 species spreading over tropical areas of Asia, Australia, Africa and America. Studies on chemical compositions and pharmacological effects of Uvaria showed that several compound classes in this genus such as alkaloid, flavonoid, cyclohexen derivaties, acetogenin, steroid, terpenoid, etc. indicate considerable biological activities, for example anti-tumor, anti-cancer, antibacterial, antifungal, antioxidant, etc. Specifically, anti-cancer activity of fractions of extract and pure isolated compounds stands out for cytotoxicity against many cancer cell lines. This study provides an overview of anti-cancer activity of Uvaria and suggests a potential for further studies on seeking and developing novel anti-cancer compounds. Key words: Anti-cancer, Uvaria.


Author(s):  
Imane Rihab Mami ◽  
Noria Merad-Boussalah ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Aim and Objective: Oxidative stress is implicated in the development and progression of many disease. Some of appropriate actions that could be initiated to taken to resolve the problem of these diseases are search for new antioxidant substances isolated from plants. The aims of this study were to study the intraspecies variations of A. verticillata and C. caeruleus essential oils from 8 locations using statistical analysis, the in vitro antioxidant properties of collective essential oils and in combinations. Materials and Methods: The essential oils were analyzed by GC and GC-MS. The intraspecies variations of the essential oil compositions were discussed using principal component analysis (PCA) and cluster analysis (CA). The antioxidant properties were evaluated DPPH-radical scavenging activity and β-carotene bleaching test. Results: The main components of Ammoides verticillata collective essential oil (Coll EO) were thymol (30.5%), carvacrol (23.2%), p-cymene (13.1%), limonene (12.5%) and terpinene-4-ol (12.3%). While roots of Carthamus caeruleus essential oil were dominated by carline oxide (86.2%). The chemical variability allowed the discrimination of two main Groups for both Coll EOs. A direct correlation between the altitudes, climate and the chemical compositions was evidenced. Ammoides verticulata and Carthamus caeruleus Coll Eos showed good antioxidant activity. In binary mixture, the interaction both Coll Eos and between oils rich of thymol and/or carvacrol with carlina oxide produced the best synergistic effects, compared to individual essential oils and the synthetic antioxidant (BHT). Conclusion: Ammoides verticillata and Carthamus caeruleus essential oil blends can be used as a natural food preservative and alternative to chemical antioxidants.


2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


2020 ◽  
Vol 10 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Imane Rihab Mami ◽  
Rania Belabbes ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Carthamus caeruleus belongs to the Asteraceae family. The roots are traditionally used as healing agents. They help to heal burns and treat skin diseases. They are also used against joint inflammation and are very effective against diseases such as irritable bowel syndrome for cancer patients. Objectives: The purpose of this work was i) to study the chemical composition of i) the essential oil and hydrosol extract of Carthamus caeruleus, ii) to isolate the major component of both extracts and iii) to evaluate their antioxidant, antifungal and insecticidal activities. Methods: The essential oil and hydrosol extract obtained from the roots were studied by GC and GC/MS. The antioxidant activities were performed using two different methods i) Radical scavenging activity (DPPH) and ii) the Ferric-Reducing Antioxidant Power (FRAP), using BHT as a positive control. Whereas, the antifungal activity of the essential oil and Carlina oxide was investigated against plant fungi. The fumigation toxicity of C. caeruleus essential oil besides Carlina oxide was evaluated against adults of Bactrocera oleae better known as the olive fly. Results: The essential oil and hydrosol extract were mainly represented by acetylenic compounds such as carline oxide and 13-methoxy carline oxide. Carlina oxide was isolated and identified by 1H and 13C NMR spectroscopic means. The results showed that Carlina oxide presented interesting antioxidant and antifungal properties, while C. caeruleus root essential oil had better insecticidal activity. Furthermore, Carlina oxide has demonstrated promising in vivo antifungal activity to control infection of apples by Penicillium expansum. Conclusion: Carlina oxide can be used as a natural food preservative and alternative to chemical fungicides to protect stored apple against Penicillium expansum.


Sign in / Sign up

Export Citation Format

Share Document