scholarly journals Fluorescence/photoacoustic imaging-guided nanomaterials for highly efficient cancer theragnostic agent

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vu Hoang Minh Doan ◽  
Van Tu Nguyen ◽  
Sudip Mondal ◽  
Thi Mai Thien Vo ◽  
Cao Duong Ly ◽  
...  

AbstractImaging modalities combined with a multimodal nanocomposite contrast agent hold great potential for significant contributions in the biomedical field. Among modern imaging techniques, photoacoustic (PA) and fluorescence (FL) imaging gained much attention due to their non-invasive feature and the mutually supportive characteristic in terms of spatial resolution, penetration depth, imaging sensitivity, and speed. In this present study, we synthesized IR783 conjugated chitosan–polypyrrole nanocomposites (IR-CS–PPy NCs) as a theragnostic agent used for FL/PA dual-modal imaging. A customized FL and photoacoustic imaging system was constructed to perform required imaging experiments and create high-contrast images. The proposed nanocomposites were confirmed to have great biosafety, essentially a near-infrared (NIR) absorbance property with enhanced photostability. The in vitro photothermal results indicate the high-efficiency MDA-MB-231 breast cancer cell ablation ability of IR-CS–PPy NCs under 808 nm NIR laser irradiation. The in vivo PTT study revealed the complete destruction of the tumor tissues with IR-CS–PPy NCs without further recurrence. The in vitro and in vivo results suggest that the demonstrated nanocomposites, together with the proposed imaging systems could be an effective theragnostic agent for imaging-guided cancer treatment.

2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


Author(s):  
Chuangjia Huang ◽  
Xiaoling Guan ◽  
Hui Lin ◽  
Lu Liang ◽  
Yingling Miao ◽  
...  

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.


2020 ◽  
Vol 10 (3) ◽  
pp. 1024 ◽  
Author(s):  
Eftekhar Rajab Bolookat ◽  
Laurie J. Rich ◽  
Gyorgy Paragh ◽  
Oscar R. Colegio ◽  
Anurag K. Singh ◽  
...  

Photoacoustic imaging (PAI) is a novel hybrid imaging modality that provides excellent optical contrast with the spatial resolution of ultrasound in vivo. The method is widely being investigated in the clinical setting for diagnostic applications in dermatology. In this report, we illustrate the utility of PAI as a non-invasive tool for imaging tattoos. Ten different samples of commercially available tattoo inks were examined for their optoacoustic properties in vitro. In vivo PAI of an intradermal tattoo on the wrist was performed in a healthy human volunteer. Black/gray, green, violet, and blue colored pigments provided higher levels of PA signal compared to white, orange, red, and yellow pigments in vitro. PAI provided excellent contrast and enabled accurate delineation of the extent of the tattoo in the dermis. Our results reveal the photoacoustic properties of tattoo inks and demonstrate the potential clinical utility of PAI for intradermal imaging of tattoos. PAI may be useful as a clinical adjunct for objective preoperative evaluation of tattoos and potentially to guide/monitor laser-based tattoo removal procedures.


2020 ◽  
Author(s):  
Azaam Aziz ◽  
Joost Holthof ◽  
Sandra Meyer ◽  
Oliver G. Schmidt ◽  
Mariana Medina-Sánchez

AbstractThe fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic (PA) tomography has shown to be promising for the imaging of microrobots in deep-tissue (ex vivo and in vivo), as it possesses the molecular specificity of optical techniques and the penetration depth of ultrasound imaging. However, the precise maneuvering and function control of microrobots, in particular in living organisms, demand the combination of both anatomical and functional imaging methods. Therefore, herein, we report the use of a hybrid High-Frequency Ultrasound (HFUS) and PA imaging system for the real-time tracking of magnetically driven micromotors (single and swarms) in phantoms, ex vivo, and in vivo (in mice bladder and uterus), envisioning their application for targeted drug-delivery.


Author(s):  
Barbara Cisterna ◽  
Federico Boschi ◽  
Anna Cleta Croce ◽  
Rachele Podda ◽  
Serena Zanzoni ◽  
...  

Optical Imaging (OI) is an emerging field developed in recent years which can be a very versatile, fast and non-invasive approach for the acquisition of images of  small (few centimetres) sized samples, such as layers of cells (in vitro), small animals (in vivo), animal organs (ex vivo) and innovative materials. OI was primarily developed for biomedical applications to study the progression of some pathologies and to assess the efficacy of new pharmaceutical compounds. Here we applied the OI technique to a completely new field: the study of food optical properties. In this case we exploited the optical properties of endogenous molecules, which are generally considered responsible of a background noise affecting the investigation. Here we used this sort of “noise”, named autofluorescence, to obtain information on the drying of Corvinone grapes employed for Amarone wine production. OI can provide interesting information and, inserted in a multimodal approach, it may be a real support to other techniques in the description of a biological phenomenon.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2112 ◽  
Author(s):  
Antoine D’Hollander ◽  
Greetje Vande Velde ◽  
Hilde Jans ◽  
Bram Vanspauwen ◽  
Elien Vermeersch ◽  
...  

Gold nanoparticles offer the possibility to combine both imaging and therapy of otherwise difficult to treat tumors. To validate and further improve their potential, we describe the use of gold nanostars that were functionalized with a polyethyleneglycol-maleimide coating for in vitro and in vivo photoacoustic imaging (PAI), computed tomography (CT), as well as photothermal therapy (PTT) of cancer cells and tumor masses, respectively. Nanostar shaped particles show a high absorption coefficient in the near infrared region and have a hydrodynamic size in biological medium around 100 nm, which allows optimal intra-tumoral retention. Using these nanostars for in vitro labeling of tumor cells, high intracellular nanostar concentrations could be achieved, resulting in high PAI and CT contrast and effective PTT. By injecting the nanostars intratumorally, high contrast could be generated in vivo using PAI and CT, which allowed successful multi-modal tumor imaging. PTT was successfully induced, resulting in tumor cell death and subsequent inhibition of tumor growth. Therefore, gold nanostars are versatile theranostic agents for tumor therapy.


2019 ◽  
Vol 116 (34) ◽  
pp. 16729-16735 ◽  
Author(s):  
Yue Sun ◽  
Feng Ding ◽  
Zhao Chen ◽  
Ruiping Zhang ◽  
Chonglu Li ◽  
...  

Discrete Pt(II) metallacycles have potential applications in biomedicine. Herein, we engineered a dual-modal imaging and chemo-photothermal therapeutic nano-agent 1 that incorporates discrete Pt(II) metallacycle 2 and fluorescent dye 3 (emission wavelength in the second near-infrared channel [NIR-II]) into multifunctional melanin dots with photoacoustic signal and photothermal features. Nano-agent 1 has a good solubility, biocompatibility, and stability in vivo. Both photoacoustic imaging and NIR-II imaging in vivo confirmed that 1 can effectively accumulate at tumor sites with good signal-to-background ratio and favorable distribution. Guided by precise dual-modal imaging, nano-agent 1 exhibits a superior antitumor performance and less severe side effects compared with a single treatment because of the high efficiency of the chemo-photothermal synergistic therapy. This study shows that nano-agent 1 provides a promising multifunctional theranostic platform for potential applications in biomedicine.


MRS Advances ◽  
2019 ◽  
Vol 4 (46-47) ◽  
pp. 2461-2470 ◽  
Author(s):  
Majid Badieirostami ◽  
Colin Carpenter ◽  
Guillem Pratx ◽  
Lei Xing ◽  
Conroy Sun

ABSTRACTNear infrared (NIR) optical imaging has demonstrated significant potential as an effective modality for cancer molecular imaging. Among various NIR probes currently under investigation, upconversion nanophosphors (UCNPs) possess great promise due to their anti-Stokes emission and sequential photon absorption which result in superior detection sensitivity and a simple imaging setup, respectively. Here we investigated the utility of this imaging modality to detect tumor cells expressing the epidermal growth factor receptor (EGFR) using affibody functionalized nanophosphors and a custom built imaging system. Initially, aqueous dispersible NaYF4: Tm+3, Yb+3 UCNPs were synthesized and their photophysical properties were characterized. Then, their luminescence response as a function of concentration and their depth resolving capability in a tissue-simulating phantom were examined. Finally, we demonstrated the use of bioconjugated UCNPs for imaging EGFR-expressing tumors both in vitro and in vivo. Our data suggests that NIR imaging with UCNPs may be useful for noninvasive imaging of tumors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Xu ◽  
Guoyun Sun ◽  
Eshu Middha ◽  
Yu-Hang Liu ◽  
Kim Chuan Chan ◽  
...  

Abstract Tumor blood vessels are chaotic and abundantly distributed, owing to their heterogeneity. Therefore, imaging techniques which reveal abnormalities of tumor vasculature play significant roles in both mechanistic and clinical diagnostic tumor studies. Photoacoustic (PA) imaging uses the intrinsic characteristics of hemoglobin, to acquire tumor hemodynamic information, while ultrasound (US) imaging provides information about tumoral vessel structures and blood flow. To improve the imaging contrast performance, hydrogel-based microdroplets were designed for both US blood flow and PA imaging in this study. The microdroplets served as carriers for PA contrast agent solution in the innermost part while oil and hydrogel formed the inner and outer layers of the droplets. In vitro experiments firstly demonstrated the dual modality contrast effects of the microdroplets on US flow determination and PA imaging. In vivo experiments were then carried out in both healthy nude mice and nude mice with subcutaneous tumor to validate the contrast effects and to monitor the duration of contrast effects in animals. Using the dual-modality microdroplets, we were able to obtain distinct edges of tumor and blood flow mapping of the tumor microvascular with improved sensitivity up to 11.09 dB for PA and 6.69 dB for US flow. Besides, the in vivo evaluation with microdroplets showed US flow enhancement for more than 60 min. Therefore, the microdroplets are able to provide the contrast effects for both US flow and PA in a relative long duration and have potential to be applied in the tumor related diagnoses and studies.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xunzhi Wu ◽  
Yongkuan Suo ◽  
Hui Shi ◽  
Ruiqi Liu ◽  
Fengxia Wu ◽  
...  

Abstract Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700–900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000–1700 nm) especially NIR-IIa window (1300–1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window. Hereby, we propose the use of laser excitation at 1275 nm, which is approved by Food and Drug Administration for physical therapy, as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption. Specifically, CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm, a conventional NIR-I window for PTT, were synthesized as PTT agents and a comparison platform, to explore the potential of 1275 and 808 nm lasers for PTT, especially in deep-tissue settings. The results showed that 1275 nm laser was practicable in PTT. It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser. NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT, and shows high potential to improve the PTT outcome.


Sign in / Sign up

Export Citation Format

Share Document