scholarly journals A Robust Machine Learning Based Framework for the Automated Detection of ADHD Using Pupillometric Biomarkers and Time Series Analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William Das ◽  
Shubh Khanna

AbstractAccurate and efficient detection of attention-deficit/hyperactivity disorder (ADHD) is critical to ensure proper treatment for affected individuals. Current clinical examinations, however, are inefficient and prone to misdiagnosis, as they rely on qualitative observations of perceived behavior. We propose a robust machine learning based framework that analyzes pupil-size dynamics as an objective biomarker for the automated detection of ADHD. Our framework integrates a comprehensive pupillometric feature engineering and visualization pipeline with state-of-the-art binary classification algorithms and univariate feature selection. The support vector machine classifier achieved an average 85.6% area under the receiver operating characteristic (AUROC), 77.3% sensitivity, and 75.3% specificity using ten-fold nested cross-validation (CV) on a declassified dataset of 50 patients. 218 of the 783 engineered features, including fourier transform metrics, absolute energy, consecutive quantile changes, approximate entropy, aggregated linear trends, as well as pupil-size dilation velocity, were found to be statistically significant differentiators (p < 0.05), and provide novel behavioral insights into associations between pupil-size dynamics and the presence of ADHD. Despite a limited sample size, the strong AUROC values highlight the robustness of the binary classifiers in detecting ADHD—as such, with additional data, sensitivity and specificity metrics can be substantially augmented. This study is the first to apply machine learning based methods for the detection of ADHD using solely pupillometrics, and highlights its strength as a potential discriminative biomarker, paving the path for the development of novel diagnostic applications to aid in the detection of ADHD using oculometric paradigms and machine learning.

2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


The increased usage of the Internet and social networks allowed and enabled people to express their views, which have generated an increasing attention lately. Sentiment Analysis (SA) techniques are used to determine the polarity of information, either positive or negative, toward a given topic, including opinions. In this research, we have introduced a machine learning approach based on Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF) classifiers, to find and classify extreme opinions in Arabic reviews. To achieve this, a dataset of 1500 Arabic reviews was collected from Google Play Store. In addition, a two-stage Classification process was applied to classify the reviews. In the first stage, we built a binary classifier to sort out positive from negative reviews. In the second stage, however we applied a binary classification mechanism based on a set of proposed rules that distinguishes extreme positive from positive reviews, and extreme negative from negative reviews. Four major experiments were conducted with a total of 10 different sub experiments to fulfill the two-stage process using different X-validation schemas and Term Frequency-Inverse Document Frequency feature selection method. Obtained results have indicated that SVM was the best during the first stage classification with 30% testing data, and NB was the best with 20% testing data. The results of the second stage classification indicated that SVM has scored better results in identifying extreme positive reviews when dealing with the positive dataset with an overall accuracy of 68.7% and NB showed better accuracy results in identifying extreme negative reviews when dealing with the negative dataset, with an overall accuracy of 72.8%.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7417
Author(s):  
Alex J. Hope ◽  
Utkarsh Vashisth ◽  
Matthew J. Parker ◽  
Andreas B. Ralston ◽  
Joshua M. Roper ◽  
...  

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


2018 ◽  
Vol 25 (7) ◽  
pp. 855-861 ◽  
Author(s):  
Halil Kilicoglu ◽  
Graciela Rosemblat ◽  
Mario Malički ◽  
Gerben ter Riet

Abstract Objective To automatically recognize self-acknowledged limitations in clinical research publications to support efforts in improving research transparency. Methods To develop our recognition methods, we used a set of 8431 sentences from 1197 PubMed Central articles. A subset of these sentences was manually annotated for training/testing, and inter-annotator agreement was calculated. We cast the recognition problem as a binary classification task, in which we determine whether a given sentence from a publication discusses self-acknowledged limitations or not. We experimented with three methods: a rule-based approach based on document structure, supervised machine learning, and a semi-supervised method that uses self-training to expand the training set in order to improve classification performance. The machine learning algorithms used were logistic regression (LR) and support vector machines (SVM). Results Annotators had good agreement in labeling limitation sentences (Krippendorff’s α = 0.781). Of the three methods used, the rule-based method yielded the best performance with 91.5% accuracy (95% CI [90.1-92.9]), while self-training with SVM led to a small improvement over fully supervised learning (89.9%, 95% CI [88.4-91.4] vs 89.6%, 95% CI [88.1-91.1]). Conclusions The approach presented can be incorporated into the workflows of stakeholders focusing on research transparency to improve reporting of limitations in clinical studies.


Author(s):  
DAYAN MANOHAR SIVALINGAM ◽  
NARENKUMAR PANDIAN ◽  
JEZEKIEL BEN-ARIE

In this work, we develop an efficient technique to transform a multiclass recognition problem into a minimal binary classification problem using the Minimal Classification Method (MCM). The MCM requires only log 2 N classifications whereas the other methods require much more. For the classification, we use Support Vector Machine (SVM) based binary classifiers since they have superior generalization performance. Unlike the prevalent one-versus-one strategy (the bottom-up one-versus-one strategy is called tournament method) that separates only two classes at each classification, the binary classifiers in our method have to separate two groups of multiple classes. As a result, the probability of generalization error increases. This problem is alleviated by utilizing error correcting codes, which results only in a marginal increase in the required number of classifications. However, in comparison to the tournament method, our method requires only 50% of the classifications and still similar performance can be attained. The proposed solution is tested with the Columbia Object Image Library (COIL). We also test the performance under conditions of noise and occlusion.


2021 ◽  
Author(s):  
Md. Zahangir Alam ◽  
Albino Simonetti ◽  
Rafaelle Billantino ◽  
Nick Tayler ◽  
Chris Grainge ◽  
...  

Providing proper timely treatment of asthma, self-monitoring can play a vital role in disease control. Existing methods (such as peak flow meter, smart spirometer) requires special equipment and are not always used by the patient. Using voice recording as surrogate measures of lung function can be used to assess asthma, which has good potential to self-monitor asthma and could be integrated into telehealth platforms. This study aims to apply machine learning approach to predict lung functions from recorded voice for asthma patients. A threshold-based mechanism was designed to separate speech and breathing from recordings (323 recordings from 26 participants) and features extracted from these were combined with biological attributes and lung function (percentage predicted forced expiratory volume in 1 second, FEV1%). Three predictive models were developed: (a) regression models to predict lung function, (b) multi-class classification models to predict the severity, and (c) binary classification models to predict abnormality. Random Forest (RF), Support Vector Machine (SVM), and Linear Regression (LR) algorithms were implemented to develop these predictive models. Training and test samples were separated (70%:30% using balanced portioning). Features were normalised and 10-fold cross-validation used to measure the model's training performances on the training samples. Models were then run on the test samples to measure the final performances. The RF based regression model performed better with lowest root mean square error = 10.86, and mean absolute score = 11.47, as compared to other models. In predicting the severity of lung function, the SVM based model performed better with 73.20% accuracy. The RF based model performed better in binary classification models for predicting abnormality of lung function (accuracy = 0.85, F1-score = 0.84, and area under the receiver operating characteristic curve = 0.88). The proposed machine learning approach can predict lung function (in terms of FEV1%), from the recorded voice files, better than other published approaches. These models can be extended to predict both the severity and abnormality of lung function with reasonable accuracies. This technique could be used to develop future telehealth solutions including smartphone-based applications which have potential to aid decision making and self-monitoring in asthma.


2012 ◽  
Vol 10 (10) ◽  
pp. 547
Author(s):  
Mei Zhang ◽  
Gregory Johnson ◽  
Jia Wang

<span style="font-family: Times New Roman; font-size: small;"> </span><p style="margin: 0in 0.5in 0pt; text-align: justify; mso-pagination: none; mso-layout-grid-align: none;" class="MsoNormal"><span style="color: black; font-size: 10pt; mso-themecolor: text1;"><span style="font-family: Times New Roman;">A takeover success prediction model aims at predicting the probability that a takeover attempt will succeed by using publicly available information at the time of the announcement.<span style="mso-spacerun: yes;"> </span>We perform a thorough study using machine learning techniques to predict takeover success.<span style="mso-spacerun: yes;"> </span>Specifically, we model takeover success prediction as a binary classification problem, which has been widely studied in the machine learning community.<span style="mso-spacerun: yes;"> </span>Motivated by the recent advance in machine learning, we empirically evaluate and analyze many state-of-the-art classifiers, including logistic regression, artificial neural network, support vector machines with different kernels, decision trees, random forest, and Adaboost.<span style="mso-spacerun: yes;"> </span>The experiments validate the effectiveness of applying machine learning in takeover success prediction, and we found that the support vector machine with linear kernel and the Adaboost with stump weak classifiers perform the best for the task.<span style="mso-spacerun: yes;"> </span>The result is consistent with the general observations of these two approaches.</span></span></p><span style="font-family: Times New Roman; font-size: small;"> </span>


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5896
Author(s):  
Eddi Miller ◽  
Vladyslav Borysenko ◽  
Moritz Heusinger ◽  
Niklas Niedner ◽  
Bastian Engelmann ◽  
...  

Changeover times are an important element when evaluating the Overall Equipment Effectiveness (OEE) of a production machine. The article presents a machine learning (ML) approach that is based on an external sensor setup to automatically detect changeovers in a shopfloor environment. The door statuses, coolant flow, power consumption, and operator indoor GPS data of a milling machine were used in the ML approach. As ML methods, Decision Trees, Support Vector Machines, (Balanced) Random Forest algorithms, and Neural Networks were chosen, and their performance was compared. The best results were achieved with the Random Forest ML model (97% F1 score, 99.72% AUC score). It was also carried out that model performance is optimal when only a binary classification of a changeover phase and a production phase is considered and less subphases of the changeover process are applied.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1450
Author(s):  
Seul-Gi Kim ◽  
Donghyun Park ◽  
Jae-Yoon Jung

Today, real-time fault detection and predictive maintenance based on sensor data are actively introduced in various areas such as manufacturing, aircraft, and power system monitoring. Many faults in motors or rotating machinery like industrial robots, aircraft engines, and wind turbines can be diagnosed by analyzing signal data such as vibration and noise. In this study, to detect failures based on vibration data, preprocessing was performed using signal processing techniques such as the Hamming window and the cepstrum transform. After that, 10 statistical condition indicators were extracted to train the machine learning models. Specifically, two types of Mahalanobis distance (MD)-based one-class classification methods, the MD classifier and the Mahalanobis–Taguchi system, were evaluated in detecting the faults of rotating machinery. Their performance for fault detection on rotating machinery was evaluated with different imbalanced ratios of data by comparing with binary classification models, which included classical versions and imbalanced classification versions of support vector machine and random forest algorithms. The experimental results showed the MD-based classifiers became more effective than binary classifiers in cases in which there were much fewer defect data than normal data, which is often common in the real-world industrial field.


Sign in / Sign up

Export Citation Format

Share Document