scholarly journals Predicting Takeover Success Using Machine Learning Techniques

2012 ◽  
Vol 10 (10) ◽  
pp. 547
Author(s):  
Mei Zhang ◽  
Gregory Johnson ◽  
Jia Wang

<span style="font-family: Times New Roman; font-size: small;"> </span><p style="margin: 0in 0.5in 0pt; text-align: justify; mso-pagination: none; mso-layout-grid-align: none;" class="MsoNormal"><span style="color: black; font-size: 10pt; mso-themecolor: text1;"><span style="font-family: Times New Roman;">A takeover success prediction model aims at predicting the probability that a takeover attempt will succeed by using publicly available information at the time of the announcement.<span style="mso-spacerun: yes;"> </span>We perform a thorough study using machine learning techniques to predict takeover success.<span style="mso-spacerun: yes;"> </span>Specifically, we model takeover success prediction as a binary classification problem, which has been widely studied in the machine learning community.<span style="mso-spacerun: yes;"> </span>Motivated by the recent advance in machine learning, we empirically evaluate and analyze many state-of-the-art classifiers, including logistic regression, artificial neural network, support vector machines with different kernels, decision trees, random forest, and Adaboost.<span style="mso-spacerun: yes;"> </span>The experiments validate the effectiveness of applying machine learning in takeover success prediction, and we found that the support vector machine with linear kernel and the Adaboost with stump weak classifiers perform the best for the task.<span style="mso-spacerun: yes;"> </span>The result is consistent with the general observations of these two approaches.</span></span></p><span style="font-family: Times New Roman; font-size: small;"> </span>

The prediction of price for a vehicle has been more popular in research area, and it needs predominant effort and information about the experts of this particular field. The number of different attributes is measured and also it has been considerable to predict the result in more reliable and accurate. To find the price of used vehicles a well defined model has been developed with the help of three machine learning techniques such as Artificial Neural Network, Support Vector Machine and Random Forest. These techniques were used not on the individual items but for the whole group of data items. This data group has been taken from some web portal and that same has been used for the prediction. The data must be collected using web scraper that was written in PHP programming language. Distinct machine learning algorithms of varying performances had been compared to get the best result of the given data set. The final prediction model was integrated into Java application


2013 ◽  
Vol 11 (9) ◽  
pp. 393
Author(s):  
Mei Zhang

<p>Fraud and error are two underlying sources of misstated financial statements. Modern machine learning techniques provide a potential direction to distinguish the two factors in such statements. In this paper, a thorough evaluation is conducted evaluation on how the off-the-shelf machine learning tools perform for fraud/error classification. In particular, the task is treated as a standard binary classification problem; i.e., mapping from an input vector of financial indices to a class label which is either error or fraud. With a real dataset of financial restatements, this study empirically evaluates and analyzes five state-of-the-art classifiers, including logistic regression, artificial neural network, support vector machines, decision trees, and bagging. There are several important observations from the experimental results. First, it is observed that bagging performs the best among these commonly used general purpose machine learning tools. Second, the results show that the underlying relationship from the statement indices to the fraud/error decision is likely to be non-linear. Third, it is very challenging to distinguish error from fraud, and general machine learning approaches, though perform better than pure chance, leave much room for improvement. The results suggest that more advanced or task-specific solutions are needed for fraud/error classification.</p>


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
Kanadpriya Basu ◽  
Treena Basu ◽  
Ron Buckmire ◽  
Nishu Lal

Every year, academic institutions invest considerable effort and substantial resources to influence, predict and understand the decision-making choices of applicants who have been offered admission. In this study, we applied several supervised machine learning techniques to four years of data on 11,001 students, each with 35 associated features, admitted to a small liberal arts college in California to predict student college commitment decisions. By treating the question of whether a student offered admission will accept it as a binary classification problem, we implemented a number of different classifiers and then evaluated the performance of these algorithms using the metrics of accuracy, precision, recall, F-measure and area under the receiver operator curve. The results from this study indicate that the logistic regression classifier performed best in modeling the student college commitment decision problem, i.e., predicting whether a student will accept an admission offer, with an AUC score of 79.6%. The significance of this research is that it demonstrates that many institutions could use machine learning algorithms to improve the accuracy of their estimates of entering class sizes, thus allowing more optimal allocation of resources and better control over net tuition revenue.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


Sign in / Sign up

Export Citation Format

Share Document