scholarly journals Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Waskow ◽  
D. Butscher ◽  
G. Oberbossel ◽  
D. Klöti ◽  
P. Rudolf von Rohr ◽  
...  

AbstractSprouts are germinated seeds that are often consumed due to their high nutritional content and health benefits. However, the conditions for germination strongly support the proliferation of present bacteria, including foodborne pathogens. Since sprouts are consumed raw or minimally processed, they are frequently linked to cases of food poisoning. Therefore, a seed decontamination method that provides efficient inactivation of microbial pathogens, while maintaining the germination capacity and quality of the seeds is in high demand. This study aimed to investigate and compare seed decontamination by cold atmospheric-pressure plasma and low-energy electron beam with respect to their impact on seed and seedling quality. The results show that both technologies provide great potential for inactivation of microorganisms on seeds, while cold plasma yielded a higher efficiency with 5 log units compared to a maximum of 3 log units after electron beam treatment. Both techniques accelerated seed germination, defined by the percentage of hypocotyl and leaf emergence at 3 days, with short plasma treatment (< 120 s) and all applied doses of electron beam treatment (8–60 kGy). However, even the lowest dose of electron beam treatment at 8 kGy in this study caused root abnormalities in seedlings, suggesting a detrimental effect on the seed tissue. Seeds treated with cold plasma had an eroded seed coat and increased seed wettability compared to electron beam treated seeds. However, these effects cannot explain the increase in the germination capacity of seeds as this was observed for both techniques. Future studies should focus on the investigation of the mechanisms causing accelerated seed germination and root abnormalities by characterizing the molecular and physiological impact of cold plasma and electron beam on seed tissue.

2000 ◽  
Vol 57 (3-6) ◽  
pp. 485-488 ◽  
Author(s):  
Shoji Hashimoto ◽  
Teruyuki Hakoda ◽  
Koichi Hirata ◽  
Hidehiko Arai

2017 ◽  
Vol 3 (2) ◽  
pp. 351-354 ◽  
Author(s):  
Gaby Gotzmann

AbstractThe use of coatings based on diamond like carbon (DLC) for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.Electron-beam modification resulted in significantly increased surface hydrophilicity, giving rise to the conclusion, that biological reaction on these surfaces will also be influenced by the modification. Furthermore, the stability of the surface modification was investigated. Therefore, the modified samples were stored for 8 weeks under ambient conditions. Additionally, the samples were stored in physiological saline solution at 37°C for 8 weeks. The stability of the modification was analyzed by contact angle measurement confirming no changes over the whole period of storage. In addition, the stability against standard cleaning and sterilization procedures was investigated. The durability of the modification to withstand these cleaning procedures was also proven.With these findings, the low-energy electron-beam modification seems to be a suitable tool for surface modification of DLC coatings. Thereby, the very good long-term stability is a great improvement in comparison to conventional surface modification methods like plasma treatment. In order to investigate the suitability of the modified coatings for biomedical applications, the cellular response was investigated using human fibroblasts, revealing a significantly reduced cell count on modified surfaces while maintaining their biocompatibility. By modification of the DLC surfaces, it is possible to adapt the cell adhesion on the treated surface areas. These findings demonstrate electron-beam treatment to be applicable for partial surface modification and functionalization within biomedical applications.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 177
Author(s):  
Renáta Švubová ◽  
Ľudmila Slováková ◽  
Ľudmila Holubová ◽  
Dominika Rovňanová ◽  
Eliška Gálová ◽  
...  

The present study aims to define the effects of Cold Atmospheric Pressure Plasma (CAPP) exposure on seed germination of an agriculturally important crop, soybean. Seed treatment with lower doses of CAPP generated in ambient air and oxygen significantly increased the activity of succinate dehydrogenase (Krebs cycle enzyme), proving the switching of the germinating seed metabolism from anoxygenic to oxygenic. In these treatments, a positive effect on seed germination was documented (the percentage of germination increased by almost 20% compared to the untreated control), while the seed and seedling vigour was also positively affected. On the other hand, higher exposure times of CAPP generated in a nitrogen atmosphere significantly inhibited succinate dehydrogenase activity, but stimulated lactate and alcohol dehydrogenase activities, suggesting anoxygenic metabolism. It was also found that plasma exposure caused a slight increment in the level of primary DNA damage in ambient air- and oxygen-CAPP treatments, and more significant DNA damage was found in nitrogen-CAPP treatments. Although a higher level of DNA damage was also detected in the negative control (untreated seeds), this might be associated with the age of seeds followed by their lower germination capacity (with the germination percentage reaching only about 60%).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Evert ◽  
T. Kocher ◽  
A. Schindler ◽  
M. Müller ◽  
K. Müller ◽  
...  

AbstractPeri-implantitis may result in the loss of dental implants. Cold atmospheric pressure plasma (CAP) was suggested to promote re-osseointegration, decrease antimicrobial burden, and support wound healing. However, the long-term risk assessment of CAP treatment in the oral cavity has not been addressed. Treatment with two different CAP devices was compared against UV radiation, carcinogen administration, and untreated conditions over 12 months. Histological analysis of 406 animals revealed that repeated CAP exposure did not foster non-invasive lesions or squamous cell carcinoma (SCCs). Carcinogen administration promoted non-invasive lesions and SCCs. Molecular analysis by a qPCR screening of 144 transcripts revealed distinct inflammatory profiles associated with each treatment regimen. Interestingly, CAP treatment of carcinogen-challenged mucosa did not promote but instead left unchanged or reduced the proportion of non-invasive lesions and SCC formation. In conclusion, repeated CAP exposure of murine oral mucosa was well tolerated, and carcinogenic effects did not occur, motivating CAP applications in patients for dental and implant treatments in the future.


Sign in / Sign up

Export Citation Format

Share Document