scholarly journals Liquid biopsy uncovers distinct patterns of DNA methylation and copy number changes in NSCLC patients with different EGFR-TKI resistant mutations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hoai-Nghia Nguyen ◽  
Ngoc-Phuong Thi Cao ◽  
Thien-Chi Van Nguyen ◽  
Khang Nguyen Duy Le ◽  
Dat Thanh Nguyen ◽  
...  

AbstractTargeted therapy with tyrosine kinase inhibitors (TKI) provides survival benefits to a majority of patients with non-small cell lung cancer (NSCLC). However, resistance to TKI almost always develops after treatment. Although genetic and epigenetic alterations have each been shown to drive resistance to TKI in cell line models, clinical evidence for their contribution in the acquisition of resistance remains limited. Here, we employed liquid biopsy for simultaneous analysis of genetic and epigenetic changes in 122 Vietnamese NSCLC patients undergoing TKI therapy and displaying acquired resistance. We detected multiple profiles of resistance mutations in 51 patients (41.8%). Of those, genetic alterations in EGFR, particularly EGFR amplification (n = 6), showed pronounced genome instability and genome-wide hypomethylation. Interestingly, the level of hypomethylation was associated with the duration of response to TKI treatment. We also detected hypermethylation in regulatory regions of Homeobox genes which are known to be involved in tumor differentiation. In contrast, such changes were not observed in cases with MET (n = 4) and HER2 (n = 4) amplification. Thus, our study showed that liquid biopsy could provide important insights into the heterogeneity of TKI resistance mechanisms in NSCLC patients, providing essential information for prediction of resistance and selection of subsequent treatment.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e21627-e21627
Author(s):  
Corinna Woestmann ◽  
Christine Ju ◽  
Bernd Hinzmann ◽  
Stephanie J. Yaung ◽  
Michael Thomas ◽  
...  

e21627 Background: 15–40% of NSCLC adenocarcinoma patients harbor EGFR sensitizing mutations. Tyrosine kinase inhibitors (TKI) provide significant clinical benefit in this population, yet all patients will develop resistance. Liquid biopsy has been demonstrated to reliably identify tumor associated somatic EGFR mutations. Quantitative assessment of mutated EGFR driven tumors could potentially be used to monitor disease progression, to assess therapeutic response, and to identify resistance mechanisms. Methods: 106 longitudinal plasma samples from 16 NSCLC patients who were treated with osimertinib as either first line or second line therapy were collected. A series of plasma samples collected during treatment and at the time of disease progression were analyzed with the AVENIO ctDNA Surveillance kit*. Mutations at each time point were identified and reported by the AVENIO software v2.0*. The mutation profile of each patient at different timepoints along with the treatment journey was examined in combination with clinical outcome data. Results: EGFR sensitizing mutations were detected in all plasma samples by sequencing except in 3 cases. Patients responsive to anti-EGFR therapy showed a rapid decrease of EGFR driver mutations to non-detectable levels. Meanwhile, patients who had stable disease or rapid disease progression had stable or slightly decreasing ctDNA levels after receiving the treatment. One patient had a MET amplification, FBXL7 SNV, and EGFR T790M detected at the time of disease progression which were not detected at baseline. One patient had both EGFR L858R and T790M mutations. This patient progressed very quickly on erlotinib. Detection of the T790M mutation decreased upon osimertinib administration, however, the L858R mutation level stayed the same. TP53 mutations were elevated in 3 patients at the time of progression, and could potentially be related to anti-EGFR resistance. Conclusions: This study clearly demonstrated that liquid biopsy could identify resistance mutations beyond EGFR prior to clinical progression. Plasma samples collected prior to or at disease progression could facilitate identification of novel resistant mutations to TKI therapy. Further studies to demonstrate the clinical utility of serial blood EGFR testing in NSCLC management are necessary. *For Research Use Only. Not for use in diagnostic procedures.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20576-e20576
Author(s):  
Ying Jin ◽  
Jianjun Zhang ◽  
Ming Chen ◽  
Yang Shao ◽  
Xun Shi ◽  
...  

e20576 Background:Patients with non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable mutations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. Currently, the known mechanisms of acquired resistance includes: the secondary gatekeeper EGFR-T790M mutation, activation of members of downstream signaling pathways such as PI3K/AKT/mTOR pathway, activation of bypass signaling such as MET, and changes in tumor histology. However, the mechanisms in the remaining patients are still unknown. Methods:In this prospective study, thirty-one advanced NSCLC patients initially carrying sensitive EGFR mutations and subsequently developing acquired resistance to the first-generation EGFR-TKIs were enrolled. Pre-treatment tumor samples as well as re-biopsies of tumor and plasma when the patients were diagnosed with EGFR-TKI resistance were acquired, followed by mutation profiling using targeted next generation sequencing (NGS) on 416 cancer-related genes. Results: In total, 55% of patients were identified to carry acquired secondary EGFR-T790M mutation. Three patients (~10%) harbor EGFR-T854A mutation, which has been reported as another TKI resistant mutation. 26% and 19% of cases accumulated TP53 and RB1 mutations, respectively. In T790M/T854A-negative cases, 30% of patients acquired MET amplification. Other potential acquired resistance mechanisms includes single nucleotide variants (SNVs) in genes such as SMAD4, DNMT3A, GNAS, ATM, KRAS, PIK3CA and TET2, and copy number variations (CNVs) in genes such as CDK4, MDM2, MYC, RICTOR and ERBB2. Conclusions:The study depicted the genetic landscapes comprehensively in matched pre- and post-EGFR-TKIs samples of NSCLC population resistant to first generation TKI treatments. Our analysis demonstrates new perspectives for further study of resistance and putting forward corresponding relevant tactics against the challenge of disease progression. Clinical trial information: NCT02804217.


2021 ◽  
Vol 13 ◽  
pp. 175883592199650
Author(s):  
Nikolaus Magios ◽  
Farastuk Bozorgmehr ◽  
Anna-Lena Volckmar ◽  
Daniel Kazdal ◽  
Martina Kirchner ◽  
...  

Background: Epidermal growth factor receptor-mutated (EGFR+) non-small-cell lung cancer (NSCLC) patients failing tyrosine kinase inhibitors (TKI) can benefit from next-line targeted therapies, but implementation is challenging. Methods: EGFR+ NSCLC patients treated with first/second-generation (1G/2G) TKI at our institution with a last follow-up after osimertinib approval (February 2016), were analyzed retrospectively, and the results compared with published data under osimertinib. Results: A total of 207 patients received erlotinib (37%), gefitinib (16%) or afatinib (47%). The median age was 66 years, with a predominance of female (70%), never/light-smokers (69%). T790M testing was performed in 174/202 progressive cases (86%), positive in 93/174 (53%), and followed by osimertinib in 87/93 (94%). Among the 135 deceased patients, 94 (70%) received subsequent systemic treatment (43% chemotherapy, 39% osimertinib), while 30% died without, either before (4%) or after progression, due to rapid clinical deterioration (22%), patient refusal of further therapy (2%), or severe competing illness (2%). Lack of subsequent treatment was significantly (4.5x, p < 0.001) associated with lack of T790M testing, whose most frequent cause (in approximately 50% of cases) was also rapid clinical decline. Among the 127 consecutive patients with failure of 1G/2G TKI started after November 2015, 47 (37%) received osimertinib, with a median overall survival of 36 months versus 24 and 21 months for patients with alternative and no subsequent therapies ( p = 0.003). Conclusion: Osimertinib after 1G/2G TKI failure prolongs survival, but approximately 15% and 30% of patients forego molecular retesting and subsequent treatment, respectively, mainly due to rapid clinical deterioration. This is an important remediable obstacle to sequential TKI treatment for EGFR+ NSCLC. It pertains also to other actionable resistance mechanisms emerging under 1G/2G inhibitors or osimertinib, whose rate for lack of next-line therapy is similar (approximately 35% in the FLAURA/AURA3 trials), and highlights the need for closer monitoring alongside broader profiling of TKI-treated EGFR+ NSCLC in the future.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e13120-e13120 ◽  
Author(s):  
Wen-xian Wang ◽  
Chunwei Xu ◽  
Meiyu Fang ◽  
You-cai Zhu ◽  
Yan-ping Chen ◽  
...  

e13120 Background: The ROS1 rearrangement has been identified in 1%-2% of NSCLC cases, these patients would benefit from the inhibitor of crizotinib. But the resistance to crizotinib inevitably developed in the patients with ROS1+ NSCLC and shown a response to crizotinib initially. The mechanism of acquired resistance to crizotinib for the patients with ROS1+ NSCLC is not identified completely now. In this study, we performed mutational profiling in a cohort of 16 ROS1+NSCLC patients at diagnosis and acquired resistance to crizotinib using targeted NGS. Methods: A total of 16 patients with stage IIIb-IV ROS1+ NSCLC were undergoing tumor biopsies or blood withdrawing by the time of acquiring resistance to crizotinib, including 4 formalin-fixed paraffin-embedded (FFPE) samples, 9 serum samples and 3 serous effusions. We used targeted NGS to detect genes status of patients. Results: In total, we identified 62 genetic alterations with a median of 3.9 mutations per patient. 93% of patients still exhibit fusions, and 31% of patients acquired ROS1 required point mutations. Besides other known resistance mechanisms, we identified CDKN2A mutations in 19% of patients. Interestingly, we also observed TERT, PTPRD, NFE2L2 and OR5L2 mutations in ROS1 required point mutations negative patients, which were restricted to crizotinib resistance. Conclusions: Our study uncovered mutational profiles of ROS1+NSCLC patients with crizotinib resistance with potential therapeutic implications, and this study also depicted the genetic landscapes comprehensively in Chinese ROS1+NSCLC population resistant to crizotinib. Our analysis demonstrates new perspectives for further study of resistance and putting forward corresponding relevant tactics against the challenge of disease progression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yulong Fu ◽  
Anqi Wang ◽  
Jieqi Zhou ◽  
Wei Feng ◽  
Minhua Shi ◽  
...  

BackgroundNon-small cell lung cancer (NSCLC) patients treated with first-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) almost always acquire resistance, and the development of novel techniques analyzing circulating tumor DNA (ctDNA) have made it possible for liquid biopsy to detect genetic alterations from limited amount of DNA with less invasiveness. While a large amount of patients with EGFR exon 21 p.Thr790 Met (T790M) benefited from osimertinib treatment, acquired resistance to osimertinb has subsequently become a growing challenge.MethodsWe performed tissue and liquid rebiopsy on 50 patients with EGFR-mutant NSCLC who acquired resistance to first-generation EGFR-TKIs. Plasma samples underwent droplet digital PCR (ddPCR) and next-generation sequencing (NGS) examinations. Corresponding tissue samples underwent NGS and Cobas® EGFR Mutation Test v2 (Cobas) examinations.ResultsOf the 50 patients evaluated, the mutation detection rates of liquid biopsy group and tissue biopsy group demonstrated no significant differences (41/48, 85.4% vs. 44/48, 91.7%; OR=0.53, 95% CI=0.15 to 1.95). Overall concordance, defined as the proportion of patients for whom at least one identical genomic alteration was identified in both tissue and plasma, was 78.3% (36/46, 95% CI=0.39 to 2.69). Moreover, our results showed that almost half of the patients (46%, 23/50) resistant to first-generation EGFR-TKI harbored p.Thr790 Met (T790M) mutation. 82.6% (19/23) of the T790M positive patients were analyzed by liquid biopsy and 60.9% (14/23) by tumor tissue sequencing. Meanwhile, a wide range of uncommon mutations was detected, and novel mechanisms of osimertinib resistance were discovered. In addition, 16.7% (2/12) of the T790M positive patients with either TP53 R237C or KRAS G12V failed to benefit from the subsequent osimertinib treatment.ConclusionOur results emphasized that liquid biopsy is applicable to analyze the drug resistance mechanisms of NSCLC patients treated with EGFR-TKIs. Moreover, we discovered two uncommon mutations, TP53 R273C and KRAS G12V, which attenuates the effectiveness of osimertinib.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Silvia La Monica ◽  
Claudia Fumarola ◽  
Daniele Cretella ◽  
Mara Bonelli ◽  
Roberta Minari ◽  
...  

Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senescence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 171-171 ◽  
Author(s):  
Piers Blombery ◽  
Ella Thompson ◽  
Tamia Nguyen ◽  
Xiangting Chen ◽  
Michelle McBean ◽  
...  

The BCL2 Gly101Val mutation may be acquired in patients with chronic lymphocytic leukaemia (CLL) treated with venetoclax (VEN), leading to reduced drug binding affinity and secondary resistance. In the majority of patients, the Gly101Val mutation is subclonal within the CLL compartment consistent with the presence of alternative resistance mechanisms in CLL cells not harboring the Gly101Val mutation. To date, two Gly101Val mutated patients have been identified with co-existing candidate resistance mechanisms in Gly101Val non-mutated cells; one with BCL-XL over-expression (Blombery et al, Cancer Discov., 2019) and another with a second subclonal candidate BCL2 resistance mutation - Asp103Tyr (Tausch et al, Haematologica 2019). Given the possibility of additional resistance mechanisms, we investigated patients with progressive CLL on VEN harboring the Gly101Val mutation for the presence of additional acquired resistance mutations in BCL2. Ten patients with progressive CLL on VEN with Gly101Val mutations were identified by sensitive allele-specific droplet digital PCR. To further assess for alternative BCL2 mutations in this cohort we performed ultra-deep amplicon-based next generation sequencing (NGS) (median depth ~50,000X) targeting BCL2. An amplicon variant caller (Canary) specifically designed for low level variant calling was used (Doig et al, BMC Bioinformatics, 2017). To achieve enhanced specificity we performed digital NGS with PCR error-correction using unique molecular indexes (UMI) (QiaSEQ Targeted DNA Panel). Given the high GC content of BCL2 we also used hybridization-based NGS using a custom targeted panel (Blombery et al, BJH 2017) combined with a sensitive unpaired variant caller (GATK4/Mutect2). In 7/10 (70%) patients, BCL2 mutations in addition to the Gly101Val were detected. Recurrent mutations (detected in more than one patient) were Asp103Tyr, Asp103Glu, Arg107_Arg110dup, and Val156Asp. All additional recurrent mutations were confirmed to be absent prior to commencing VEN (sensitivity 1% variant allele frequency[VAF]). Phase-analysis of NGS reads was consistent with the presence of the additional recurrent mutations on different alleles (and therefore cells, assuming heterozygosity) to both each other and to Gly101Val. Multiple addition recurrent mutations were observed in patients in the cohort with one patient harboring three recurrent mutations in addition to the Gly101Val (Asp103Tyr, Asp103Glu, Val156Asp). In multiple patients in the cohort, the VAF of non-Gly101Val mutations exceeded that of the Gly101Val mutation. Importantly, in all patients a significant (albeit variable) proportion of CLL cells were found to be BCL2 wild-type consistent with the presence of as yet unidentified resistance mechanisms unrelated to BCL2 mutations. In one patient, two additional non-recurrent mutations were observed (Ala113Gly and Arg129Leu) in addition to Gly101Val and Val156Asp. Again, all four mutations in this patient were observed to be in mutually exclusive NGS reads. Strikingly, all of the recurrent acquired BCL2 mutated residues identified in our cohort are situated in the BCL2 binding groove that binds VEN (Figure 1). The Asp103 codon in the P4 pocket is critical for VEN binding through hydrogen bonding between its sidechain and the azaindole moiety of VEN. The Asp103Glu mutation is noteworthy given that the equivalent residue to Asp103 in BCL-XL is a Glu, which reduces VEN binding to BCL-XL. The Val156 mutation situated at the base of the P2 pocket is close to the chlorophenyl moiety of VEN and a change to Asp in this position may disrupt VEN binding. Ongoing binding experiments and modeling in cellular systems will further elucidate the mechanism and contributions of these new recurrent mutations to VEN resistance. In summary, we have extended the landscape of acquired candidate resistance mutations occurring in patients treated with VEN to include four novel recurrent BCL2 mutations. Moreover, our data are consistent with the emerging observation of multiple acquired resistance mechanisms operating in different CLL cells in a single patient contributing to an "oligoclonal" pattern of clinical relapse on VEN therapy. Figure 1 - BCL2 protein structure surface bound to venetoclax (VEN) in orange. The Asp103Tyr, Asp103Glu and Val156Asp mutation sites are shown in red and Arg107_Arg110dup region in blue Disclosures Blombery: Janssen: Honoraria; Invivoscribe: Honoraria; Novartis: Consultancy. Anderson:Walter and Eliza Hall Institute: Employment, Patents & Royalties: Institute receives royalties for venetoclax, and I receive a fraction of these.. Seymour:Acerta: Consultancy; Celgene: Consultancy, Research Funding, Speakers Bureau; Janssen: Consultancy, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Consultancy, Research Funding, Speakers Bureau; Takeda: Consultancy. Huang:Genentech: Patents & Royalties: DCSH is an employee of the Walter and Eliza Hall Institute which receives milestone and royalty payments related to venetoclax. Roberts:AbbVie: Other: Unremunerated speaker for AbbVie, Research Funding; Australasian Leukaemia and Lymphoma Group: Membership on an entity's Board of Directors or advisory committees; Janssen: Research Funding; Walter and Eliza Hall Institute: Patents & Royalties: Institute receives royalties for venetoclax, and I receive a fraction of these.; BeiGene: Research Funding.


2020 ◽  
Vol 10 (8) ◽  
pp. 2895 ◽  
Author(s):  
Giuseppa De Luca ◽  
Sonia Lastraioli ◽  
Romana Conte ◽  
Marco Mora ◽  
Carlo Genova ◽  
...  

Targeted next-generation sequencing (NGS) based on molecular tagging technology allowed considerable improvement in the approaches of cell-free DNA (cfDNA) analysis. Previously, we demonstrated the feasibility of the OncomineTM Lung cell-free DNA Assay (OLcfA) NGS panel when applied on plasma samples of post-tyrosine kinase inhibitors (TKIs) non-small cell lung cancer (NSCLC) patients. Here, we explored in detail the coverage metrics and variant calling of the assay and highlighted strengths and challenges by analyzing 92 plasma samples collected from a routine cohort of 76 NSCLC patients. First, performance of OLcfA was assessed using Horizon HD780 reference standards and sensitivity and specificity of 92.5% and 100% reported, respectively. The OLcfA was consequently evaluated in our plasma cohort and NGS technically successful in all 92 sequenced libraries. We demonstrated that initial cfDNA amount correlated positively with library yields (p < 0.0001) and sequencing performance (p < 0.0001). In addition, 0.1% limit of detection could be achieved even when < 10 ng cfDNA was employed. In contrast, the cfDNA amount seems to not affect the EGFR mutational status (p = 0.16). This study demonstrated an optimal performance of the OLcfA on routine plasma samples from NSCLC patients and supports its application in the liquid biopsy practice for cfDNA investigation in precision medicine laboratories.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1197 ◽  
Author(s):  
Zaman ◽  
Wu ◽  
Bivona

Identifying recurrent somatic genetic alterations of, and dependency on, the kinase BRAF has enabled a “precision medicine” paradigm to diagnose and treat BRAF-driven tumors. Although targeted kinase inhibitors against BRAF are effective in a subset of mutant BRAF tumors, resistance to the therapy inevitably emerges. In this review, we discuss BRAF biology, both in wild-type and mutant settings. We discuss the predominant BRAF mutations and we outline therapeutic strategies to block mutant BRAF and cancer growth. We highlight common mechanistic themes that underpin different classes of resistance mechanisms against BRAF-targeted therapies and discuss tumor heterogeneity and co-occurring molecular alterations as a potential source of therapy resistance. We outline promising therapy approaches to overcome these barriers to the long-term control of BRAF-driven tumors and emphasize how an extensive understanding of these themes can offer more pre-emptive, improved therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document