scholarly journals Durable tracking anti-SARS-CoV-2 antibodies in cancer patients recovered from COVID-19

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Huang ◽  
Jing Yu ◽  
Dan Li ◽  
Kai He ◽  
Wenyang Liu ◽  
...  

AbstractCancer patients are more susceptible to SARS-CoV-2 infection and generally have higher mortality rate. Anti-SARS-CoV-2 IgG is an important consideration for the patients in this COVID-19 pandemic. Recent researches suggested the rapid decay of anti-SARS-CoV-2 antibodies in the general population, but the decline rate of the antibodies in cancer patients was unknown. In this observational study, we reported the clinical features of the 53 cancer patients infected by SARS-CoV-2 from Wuhan, China and tracked the presence of anti-SARS-CoV-2 antibodies in the patients for more than 12 months. We found the duration (days) of anti-SARS-CoV-2 IgG in the patients was significant longer in chemotherapy (mean: 175; range: 75 to 315) and radiotherapy groups (mean: 168; range: 85 to 265) than in non-chemo- or radio-therapy group (mean: 58; range: 21 to 123) after their recovery from COVID-19. We also used single-cell RNA sequencing to track the immunologic changes in a representative patient recovered  from COVID-19 and found that CD8 + effective T cells, memory B cells and plasma cells were persistently activated in the patient undergoing chemotherapy. Together, our findings show that chemotherapy and radiotherapy might be beneficial to extend the duration of anti-SARS-CoV-2 IgG.

2021 ◽  
Author(s):  
Yongsheng Huang ◽  
Jing Yu ◽  
Dan Li ◽  
Kai He ◽  
Wenyang Liu ◽  
...  

Abstract Cancer patients are more susceptible to SARS-CoV-2 infection and generally have higher mortality rate. Anti-SARS-CoV-2 IgG is an important consideration for the patients in this COVID-19 pandemic. Recent researches suggested the rapid decay of anti-SARS-CoV-2 antibodies in the general population, but the decline rate of the antibodies in cancer patients was unknown. In this observational study, we reported the clinical features of the 53 cancer patients infected by SARS-CoV-2 from two hospitals in Wuhan, China and tracked the presence of anti-SARS-CoV-2 antibodies in the patients for more than 12 months. We found the duration (days) of anti-SARS-CoV-2 IgG in the patients was significant longer in chemotherapy (mean: 175; range: 75 to 315) and radiotherapy groups (mean: 168; range: 85 to 265) than in non-chemo- or radio-therapy group (mean: 58; range:21 to 123) after their recovery from COVID-19. We also used single-cell RNA sequencing to track the immunologic changes in a representative patient infected by COVID-19 for more than one year, and found that CD8 + effective T cells, memory B cells and plasma cells were persistently activated in the patient undergoing chemotherapy. Together, our findings show that chemotherapy and radiotherapy might be beneficial to extend the duration of anti-SARS-CoV-2 IgG.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Li ◽  
Zheng Zhang ◽  
Zuo-min Wang

Abstract Background Host immunity plays an important role against oral microorganisms in periodontitis. Methods This study assessed the infiltrating immune cell subtypes in 133 healthy periodontal and 210 chronic periodontitis tissues from Gene Expression Omnibus (GEO) datasets using the CIBERSORT gene signature files. Results Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues, when compared to those in healthy controls. In contrast, memory B cells, resting dendritic, mast cells and CD4 memory cells, as well as activated mast cells, M1 and M2 macrophages, and follicular helper T cells, were mainly present in healthy periodontal tissues. Furthermore, these periodontitis tissues generally contained a higher proportion of activated CD4 memory T cells, while the other subtypes of T cells, including resting CD4 memory T cells, CD8 T cells, follicular helper T cells (TFH) and regulatory T cells (Tregs), were relatively lower in periodontitis tissues, when compared to healthy tissues. The ratio of dendritic and mast cells and macrophages was lower in periodontitis tissues, when compared to healthy tissues. In addition, there was a significant negative association of plasma cells with most of the other immune cells, such as plasma cells vs. memory B cells (γ = − 0.84), plasma cells vs. resting dendritic cells (γ = − 0.64), plasma cells vs. resting CD4 memory T cells (γ = 0.50), plasma cells versus activated dendritic cells (γ = − 0.46), plasma cells versus TFH (γ = − 0.46), plasma cells versus macrophage M2 cells (γ = − 0.43), or plasma cells versus macrophage M1 cells (γ = − 0.40), between healthy control and periodontitis tissues. Conclusion Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues. The infiltration of different immune cell subtypes in the periodontitis site could lead the host immunity against periodontitis.


2014 ◽  
Vol 83 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Rebecca A. Elsner ◽  
Christine J. Hastey ◽  
Nicole Baumgarth

CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response toBorrelia burgdorferiappears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality ofB. burgdorferiinfection-induced CD4 TFHcells. We report that CD4 T cells were effectively primed and TFHcells induced afterB. burgdorferiinfection. These CD4 T cells contributed to the control ofB. burgdorferiburden and supported the induction ofB. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependentB. burgdorferiprotein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells.In vitroT-B cocultures demonstrated that T cells isolated fromB. burgdorferi-infected but notB. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responsesin vivo. The data further suggest thatB. burgdorferiinfection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5289-5289 ◽  
Author(s):  
Georgiana Grigore ◽  
Martin Perez-Andres ◽  
Susana Barrena ◽  
Rosa Ana Rivas ◽  
Marcos González ◽  
...  

Abstract Introduction Management of B-cell chronic lymphocytic leukemia (CLL) is currently undergoing profound changes. Accordingly, new treatment options with an expected less toxicity than standard regimens are been explored. Recent results show that chemoimmunotherapy may improve the life expectancy of CLLpatients and has proven to be more efficient than chemotherapy alone in depleting malignant cells. Despite its efficacy, little is known about its precise immunomodulatory effects. Aim To evaluate the effects of chemoimmunotherapy with bendamustine plusrituximab (BR) on the distribution of normal residual leucocyte populations in peripheral blood (PB) from advanced-stage CLL patients, with special emphasis on maturation-associated B-cell subsets (immature, naïve, memory IgM/IgG/IgA and plasma cells). Material and Methods Distribution of PB neoplastic cells and residual normal immune cell subpopulations were analyzed in 72 CLL patients with advanced disease (Binet B/C), before therapy (M0) and after 1 course of BR (M1). The same analysis was repeated 3 months after completing treatment (M3) in 31/72 patients. PB leucocyte cell subsets were identified at each time-point by 8-color flow cytometry with monoclonal antibody reagents against CD3, CD4, CD5, CD8, TCRgd, CD19, CD20, CD27, CD38, CD45, CD56, sIgM, sIgA, sIgG, sIgLambda and sIgKappa. Results After the first BR course, absolute counts of all PB myeloid subsets were significantly decreased as compared to time M0, including neutrophils (2,744±1,830 vs 4,764±2,906 cells/uL, p<0.001), eosinophils (132±185 vs 215±245 cells/uL; p<0.001), basophils (37±28 vs 59±47 cells/uL, p<0.001), monocytes (334±280 vs 504±424 cells/uL, p=0.001) and dendritic cells (DCs, 41±40 vs 89±168 cells/uL, p=0.02), as well as NK cells (120±147 vs 550±599 cells/uL, p<0.001). At M3, all these populations remained decreased when compared to M0, but at similar levels to M1 (except for the absolute number of DCs, found to be increased vs. M1 -74±46 vs 41±40 cells/uL, p=0.008- and closer to M0). In turn, total T cells were reduced in M1 as compared to M0 values (818±655 vs 3,905±2,375 cells/uL, p<0.001), due to decreased numbers of CD4+ (424±376 vs 1,573±1,204 cells/uL, p<0.001), CD8+ (342±330 vs 1,334±1,218 cells/uL, p<0.001) and TCRgd (21±28 vs 141±289 cells/uL, p=0.001) T cells, leading to an increased CD4/CD8 ratio (1.8±1.3 vs 1.4±0.8, p=0.004). Also, decreased levels of CD4 (222±156 cells/uL), CD8 (501±544 cells/uL) and TCRgd (21±40 cells/uL) T cells were observed at time M3 vs. baseline values. No changes (p>0.05) were observed for CD8 and TCRgd for M3 vs. M1, while CD4+ T-cell numbers were significantly reduced (p=0.006), resulting in an inverted CD4/CD8 ratio (0.9±1.0 vs. 1.8±1.3, p=0.005) at the M3 time-point. As regards B cells, the absolute count of both neoplastic and normal B lymphocytes were significantly decreased at time M1 vs. M0 (3,363±9,353 vs 53,521±56,602 CLL cells/uL and 2±6 vs 58±107 normal B-cells/uL, p=0.006 and p<0.001, respectively). Within the normal residual B-cell compartment, we found significantly decreased numbers of immature (0.07±0.22 vs 6.55±21.64 cells/uL, p=0.01) and memory (1.3±14.7 vs 35.1±43.6 cells/uL, p<0.001) B cells -including sIgM (0.5±2.3 vs 14.5±24.8 cells/uL, p<0.001), sIgG (0.2±1.0 vs 11.5±17.2 cells/uL; p<0.001) and sIgA (0.6±3.1 vs 9.5±12.5 cells/uL, p<0.001) memory B cells-. At time M3, decreased (p<0.01) naïve (0.46±2.58 cells/uL) and memory B-cells (1.34±6.75 cells/uL), including IgM (0.46±2.58 cells/uL), IgG (0.34±1.69 cells/uL) and IgA (0.09±0.31 cells/uL), but not immature cells (2.28±8.84 cells/uL, p=0.9), were observed as compared to time M0. Differences did not reach statistical significance when comparing M3 vs. M1. The number of circulating plasma cells did not significantly vary during treatment. Conclusions All PB leucocyte subsets are affected by BR treatment in advanced-stage CLL. Interestingly, at time M3 the CD4+ T-cell subset continues to be decreased, while the other T-cell compartments seem to remain stable. Also, normal B cells are affected by BR treatment, and the depletion induced after one course therapy is maintained even three months after finishing BR therapy, except for immature B cells, that seem to be the first to recover in PB. Further studies will offer a more accurate insight into the biology of cell recovery during and after BR therapy in CLL patients. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 199 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Barbara J. Hebeis ◽  
Karin Klenovsek ◽  
Peter Rohwer ◽  
Uwe Ritter ◽  
Andrea Schneider ◽  
...  

Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1155-1155 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi U. Ahmad ◽  
Bernhard Baumgartner ◽  
...  

Abstract Memory B cells are essential for maintaining FVIII inhibitors in patients with hemophilia A. Using the murine E-17 model of hemophilia A, we showed previously that re-exposure to FVIII re-stimulates memory B cells very rapidly and drives their differentiation into antibody-producing plasma cells. Furthermore, we presented evidence that the re-stimulation of FVIII-specific memory B cells is regulated by the dose of FVIII used. Low doses re-stimulate memory B cells whereas high doses of FVIII inhibit this process and prevent the differentiation into anti-FVIII antibody-producing plasma cells. Both the re-stimulation and the inhibition can be modulated by triggering toll-like receptors (TLR) 7 and 9 with specific ligands that are typically found in microbial components derived from viruses or bacteria. Re-stimulation of FVIII-specific memory B cells in the presence of TLR ligands can even be observed in the absence of CD4+ helper T cells that are otherwise absolutely essential for this process. Based on these previous observations we asked whether the re-stimulation of FVIII-specific memory B cells in the absence of CD4+ helper T cells requires interaction with alternative “helper” cells that provide co-stimulatory signals to memory B cells. To address this question we used spleen cells obtained from hemophilic mice treated with FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity of the different cell populations was achieved by a combination of magnetic bead separation and multi-color flow cytometric cell sorting. The memory B cell compartment was specified by the expression of CD19 together with surface IgG and the absence of surface IgM and IgD. Memory B cells were single-cell sorted and cultivated in micro-well cultures in the presence of FVIII to stimulate the in vitro differentiation into anti-FVIII antibody- producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 or 9 and dendritic cells were added to the micro-well cultures to find out which of the additives were required for the re-stimulation and differentiation of memory B cells. Neither FVIII alone nor any combination of FVIII and ligands for TLR 7 and 9 were able to re-stimulate highly purified memory B cells to differentiate into anti-FVIII antibody-producing plasma cells. The re-stimulation strictly depended on the presence of additional cells that could provide co-stimulation. These additional cells could be either activated CD4+ T cells or, alternatively, plasmacytoid dendritic cells activated by ligands for TLR 7 or 9. Some re-stimulation in the presence of activated plasmacytoid dendritic cells was even observed in the complete absence of FVIII. Based on our results we conclude that plasmacytoid dendritic cells that are activated by TLR ligands such as those expressed by infectious agents can replace CD4+ T cells in triggering the re-stimulation of memory B cells and their differentiation into antibody-producing plasma cells. Our findings provide important new insights into the regulation of memory-B-cell re-stimulation that need to be considered in the development of new therapeutic strategies for treating patients with FVIII inhibitors. Furthermore, our findings underscore the importance of environmental factors in the regulation of FVIII inhibitor development.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi Uddin Ahmad ◽  
Eva M Muchitsch ◽  
...  

Abstract Memory B cells specific for factor VIII (FVIII) are critical for maintaining FVIII inhibitors in patients with hemophilia A. They are precursors of anti-FVIII antibody-producing plasma cells and are highly efficient antigen-presenting cells for the activation of T cells. The eradication of FVIII-specific memory B cells will be a prerequisite for any successful new approach to induce immune tolerance in patients with FVIII inhibitors. Little is known about the regulation of these cells. Previously we showed that ligands for toll-like receptors (TLR) 7 and 9 are able to re-stimulate FVIII-specific memory B cells in the absence of T-cell help. However, alternative “helper cells” such as dendritic cells are essential for providing help to memory B cells under such conditions. Based on these findings, we asked which co-stimulatory interactions are required for the restimulation of memory B cells in the presence of dendritic cells and ligands for TLR and whether these co-stimulatory interactions are the same as those required for the restimulation of memory B cells in the presence of activated T cells. We used spleen cells from hemophilic mice treated with human FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity was achieved by a combination of magnetic bead separation and fluorescence-activated cell sorting. The memory B cell compartment was specified by the expression of CD19 together with IgG and the absence of surface IgM and IgD. Memory B cells were cultured in the presence of FVIII to stimulate their differentiation into anti-FVIII antibody-producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 and 9 and dendritic cells were added to the memory-B-cell cultures. Blocking antibodies and competitor proteins were used to specify the co-stimulatory interactions required for the re-stimulation of memory B cells in the presence of either CD4+ T cells or dendritic cells and ligands for TLR 7 and 9. Our results demonstrate that the blockade of B7-1 and B7-2 as well as the blockade of CD40L inhibit the re-stimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing plasma cells in the presence of T-cell help. Similar requirements apply for the re-stimulation of memory B cells in the presence of dendritic cells and ligands for TLR 7 or 9. Dendritic cells in the absence of ligands for TLR are not able to provide help for the re-stimulation of memory B cells, which indicates that dendritic cells need to be activated. Furthermore, ligands for TLR 7 or 9 were not able to re-stimulate memory B cells in the complete absence of dendritic cells. Based on these results we conclude that dendritic cells activated by ligands for TLR 7 or 9 can substitute for activated CD4+ T cells in providing co-stimulatory help for memory-B-cell re-stimulation. CD40-CD40L interactions seem to be the most important co-stimulatory interactions for the re-stimulation of memory B cells, not only in the presence of activated CD4+ T cells but also in the presence of ligands for TLR and dendritic cells.


Sign in / Sign up

Export Citation Format

Share Document