scholarly journals Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vishnu Chauhan ◽  
Deepika Gupta ◽  
Nikhil Koratkar ◽  
Rajesh Kumar

AbstractSwift heavy ions (SHI) irradiation of Nickel (Ni) beam with different ions fluence bring the modifications in the functional properties of radio frequency (RF) grown zirconium oxide (ZrO2) nanocrystalline thin films. X-ray diffraction analysis affirms the monoclinic to tetragonal phase transformation and diminishing of peak at higher fluence 1 × 1014 and 2 × 1014 ions/cm2 induced by electronic excitation caused by SHI. Zirconium oxide thin films exhibit the same thickness (195 nm) of virgin and irradiated samples and whereas the nanocrystalline thin films have the elemental composition in proper stoichiometry (1:2) as analyzed by rutherford backscattering spectroscopy (RBS). Photoluminescence measurements confirm the blue emission of virgin and irradiated sample recorded at excitation wavelength 270 to 310 nm. The intensity of obtained emission bands varies with fluence which is interpreted in terms of generation and annihilation of defect centers. The characteristic Ag and Bg Raman modes of monoclinic and tetragonal ZrO2 are obtained at different positions. Moreover, the nanocrystalline ZrO2 thin films exhibits the most prominent absorption phenomenon in the visible range and the irradiation cause significant decrease in band gap to 3.69 eV compare to the virgin ZrO2 sample (3.86 eV). XPS analysis indicates the shifting of the core levels Zr 3d and O 1s towards higher binding energy and spin—orbit splitting of different states. The findings in this research justify that the irradiated thin films can be a potential candidate for designing of new materials, intense radiation environments, nuclear reactors, nuclear waste systems, clean energy sources.

2005 ◽  
Vol 908 ◽  
Author(s):  
Djamel Kaoumi ◽  
Arthur T. Motta ◽  
Robert C. Birtcher

AbstractIn situ observations in a transmission electron microscope (TEM) were used to study ion-beam enhancement of second-phase precipitation in Zr-Fe nanocrystalline thin films. The free-standing films were prepared by co-sputter deposition with an Fe content of 1.2 at%. TEM diffraction analysis showed that only the hcp Zr crystal structure was present in the as-deposited films. No second phases were detected, although Rutherford Backscattering Spectroscopy (RBS) confirmed a Fe content beyond the solubility limit of Fe in Zr (of the order of ppm). This means the thin films were Zr solid solutions supersaturated with Fe. Heat treatment in the absence of irradiation was observed to cause precipitation of the Zr2Fe intermetallic phase, but only above 673 K. The same second-phase precipitation can occur at lower temperatures in the presence of ion irradiation. Samples were irradiated in-situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with Kr ions to fluences in excess of 1016 ion/cm2, at temperatures ranging from 50 to 573 K. Second phase precipitation was detected by electron diffraction patterns and by dark field imaging comparing regions exposed to the beam with regions protected from the beam by the TEM support grid. Precipitation of Zr2Fe intermetallic phase was observed at all irradiating temperatures above room temperature. In the bulk, this phase is thermodynamically metastable in the range of temperatures investigated (relative to the orthorhombic Zr3Fe intermetallic phase). The kinetics of the irradiation-enhanced second-phase precipitation was followed by recording the diffraction patterns at regular intervals. The dose to precipitation was found to decrease with increasing irradiation temperature.


2012 ◽  
Vol 26 (02) ◽  
pp. 1250012 ◽  
Author(s):  
V. V. ATUCHIN ◽  
V. SH. ALIEV ◽  
B. M. AYUPOV ◽  
I. V. KOROLKOV

Amorphous zirconium oxide (a- ZrO 2) thin films were prepared onto fuzzed quartz substrates by ion beam sputtering deposition (IBSD) method in ( Ar + O 2) gas mixture. Optical parameters of the films were evaluated by laser ellipsometry (λ = 632.8 nm ) and optical transmission measurements. Structural parameters were studied by XRD measurements. Variation of refractive index and film thickness have been defined as a function of time of high-temperature annealing at T = 900° C . Formation of monoclinic zirconium oxide (m- ZrO 2) nanocrystals with diameter of ~60 nm embedded into a- ZrO 2 matrix has been found by XRD analysis after long-time annealing.


ACS Omega ◽  
2020 ◽  
Vol 5 (43) ◽  
pp. 28027-28036
Author(s):  
Diego L. S. Scoca ◽  
Felipe Cemin ◽  
Sara A. Bilmes ◽  
Carlos A. Figueroa ◽  
Antonio R. Zanatta ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 435
Author(s):  
Saqib Rashid ◽  
Marco Sebastiani ◽  
Muhammad Mughal ◽  
Rostislav Daniel ◽  
Edoardo Bemporad

In this work, the ternary titanium, copper, and silver (Ti-Cu-Ag) system is investigated as a potential candidate for the production of mechanically robust biomedical thin films. The coatings are produced by physical vapor deposition—magnetron sputtering (MS-PVD). The composite thin films are deposited on a silicon (100) substrate. The ratio between Ti and Cu was approximately kept one, with the variation of the Ag content between 10 and 35 at.%, while the power on the targets is changed during each deposition to get the desired Ag content. Thin film characterization is performed by X-ray diffraction (XRD), nanoindentation (modulus and hardness), to quantitatively evaluate the scratch adhesion, and atomic force microscopy to determine the surface topography. The residual stresses are measured by focused ion beam and digital image correlation method (FIB-DIC). The produced Ti-Cu-Ag thin films appear to be smooth, uniformly thick, and exhibit amorphous structure for the Ag contents lower than 25 at.%, with a transition to partially crystalline structure for higher Ag concentrations. The Ti-Cu control film shows higher values of 124.5 GPa and 7.85 GPa for modulus and hardness, respectively. There is a clear trend of continuous decrease in the modulus and hardness with the increase of Ag content, as lowest value of 105.5 GPa and 6 GPa for 35 at.% Ag containing thin films. In particular, a transition from the compressive (−36.5 MPa) to tensile residual stresses between 229 MPa and 288 MPa are observed with an increasing Ag content. The obtained results suggest that the Ag concentration should not exceed 25 at.%, in order to avoid an excessive reduction of the modulus and hardness with maintaining (at the same time) the potential for an increase of the antibacterial properties. In summary, Ti-Cu-Ag thin films shows characteristic mechanical properties that can be used to improve the properties of biomedical implants such as Ti-alloys and stainless steel.


2007 ◽  
Author(s):  
N. Y. Yuan ◽  
J. H. Li ◽  
Z. J. He ◽  
G. Li ◽  
X. Q. Wang

2018 ◽  
Vol 508 ◽  
pp. 385-394 ◽  
Author(s):  
P. Balasaritha ◽  
S. Amirthapandian ◽  
P. Magudapathy ◽  
R.M. Sarguna ◽  
S.K. Srivastava ◽  
...  

Author(s):  
Saqib Rashid ◽  
Marco Sebastiani ◽  
Muhammad Zeeshan Mughal ◽  
Rostislav Daniel ◽  
Edoardo Bemporad

In this work, the ternary titanium, copper and silver (Ti-Cu-Ag) system is investigated as a potential candidate for the production of mechanically robust biomedical thin films. The coatings are produced by physical vapor deposition-magnetron sputtering (MS-PVD). The composite thin films are deposited on a silicon (100) substrate. The ratio between Ti and Cu was approximately kept one, with the variation of the Ag content between 10 and 35 at.%, while the power on the targets is changed during each deposition to get the desired Ag content. Thin film characterization is performed by x-ray diffraction (XRD), nanoindentation (modulus and hardness) and Atomic force microscopy to determine the surface topography. The residual stresses are measured by focused ion beam and digital image correlation method (FIB-DIC). The produced Ti-Cu-Ag thin films appear to be smooth, uniformly thick and exhibit amorphous structure for the Ag contents lower than 25 at.%, with a transition to partially crystalline structure for higher Ag concentrations. The Ti-Cu control film shows higher values of 124.5 GPa and 7.85 GPa for modulus and hardness respectively. There is a clear trend of continuous decrease in the modulus and hardness with the increase of Ag content, as lowest value of 105.5 GPa and 6 GPa for 35 at.% Ag containing thin films. In particular, a transition from the compressive (-36.5 MPa) to tensile residual stresses between 229 MPa and 288 MPa are observed with an increasing Ag content. The obtained results suggest that the Ag concentration should not exceed 25 at.%, in order to avoid an excessive reduction of the modulus and hardness with maintaining (at the same time) the potential for an increase of the antibacterial properties. In summary, Ti-Cu-Ag thin films shows characteristic mechanical properties that can be used to improve the properties of biomedical implants such as Ti-alloys and stainless steel.


Sign in / Sign up

Export Citation Format

Share Document