scholarly journals In vitro impact preliminary assessment of airborne particulate from metalworking and woodworking industries

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilona Pavlovska ◽  
Anna Ramata-Stunda ◽  
Zanna Martinsone ◽  
Martins Boroduskis ◽  
Liene Patetko ◽  
...  

AbstractInhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.

2021 ◽  
Author(s):  
Ilona Pavlovska ◽  
Anna Ramata-Stunda ◽  
Zanna Martinsone ◽  
Martins Boroduskis ◽  
Liene Patetko ◽  
...  

Abstract BackgroundInhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate mode of action of pollutants. ResultsGilian 3500 pumps equipped with Standard Midget Impingers were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway™ tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using MTT assay. RT-qPCR analyses performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. Both types of particles suppressed expression of gelsolin, with metalworking samples showing the most pronounced effect. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression. Conclusion3D Epithelial tissues can be used to model exposures to airborne pollutants. Exposure to particles from woodworking and metalworking had a minor effect on tissue viability but affected the expression of inflammation and apoptosis-related genes.


Author(s):  
Ilona Pavlovska ◽  
Anna Ramata-Stunda ◽  
Žanna Martinsone ◽  
Martins Boroduskis ◽  
Liene Patetko ◽  
...  

Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate mode of action of pollutants. Gilian 3500 pumps equipped with Standard Midget Impingers were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway™ tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using MTT assay. RT-qPCR analyses performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. Both types of particles suppressed expression of gelsolin, with metalworking samples showing the most pronounced effect. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression. 3D Epithelial tissues can be used to model exposures to airborne pollutants. Exposure to particles from woodworking and metalworking had a minor effect on tissue viability but affected the expression of inflammation and apoptosis-related genes.


2021 ◽  
Author(s):  
Ilona Pavlovska ◽  
Anna Ramata-Stunda ◽  
Zanna Martinsone ◽  
Martins Boroduskis ◽  
Liene Patetko ◽  
...  

Abstract Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate mode of action of pollutants. Gilian 3500 pumps equipped with Standard Midget Impingers were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway™ tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using MTT assay. RT-qPCR analyses performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. Both types of particles suppressed expression of gelsolin, with metalworking samples showing the most pronounced effect. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression. 3D Epithelial tissues can be used to model exposures to airborne pollutants. Exposure to particles from woodworking and metalworking had a minor effect on tissue viability but affected the expression of inflammation and apoptosis-related genes.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1715
Author(s):  
Xin Luo ◽  
Qiangqiang Deng ◽  
Yaru Xue ◽  
Tianwei Zhang ◽  
Zhitao Wu ◽  
...  

Pulmonary fibrosis is a severe and irreversible interstitial pulmonary disease with high mortality and few treatments. Magnesium lithospermate B (MLB) is a hydrosoluble component of Salvia miltiorrhiza and has been reported to have antifibrotic effects in other forms of tissue fibrosis. In this research, we studied the effects of MLB on pulmonary fibrosis and the underlying mechanisms. Our results indicated that MLB treatment (50 mg/kg) for seven days could attenuate bleomycin (BLM)-induced pulmonary fibrosis by reducing the alveolar structure disruption and collagen deposition in the C57 mouse model. MLB was also found to inhibit transforming growth factor-beta (TGF-β)-stimulated myofibroblastic transdifferentiation of human lung fibroblast cell line (MRC-5) cells and collagen production by human type II alveolar epithelial cell line (A549) cells, mainly by decreasing the expression of TGF-β receptor I (TGF-βRI) and regulating the TGF-β/Smad pathway. Further studies confirmed that the molecular mechanisms of MLB in BLM-induced pulmonary fibrosis mice were similar to those observed in vitro. In summary, our results demonstrated that MLB could alleviate experimental pulmonary fibrosis both in vivo and in vitro, suggesting that MLB has great potential for pulmonary fibrosis treatment.


1995 ◽  
Vol 269 (6) ◽  
pp. L865-L872 ◽  
Author(s):  
M. A. Fiedler ◽  
K. Wernke-Dollries ◽  
J. M. Stark

The mechanism of respiratory syncytial virus (RSV)-induced inflammation in the airways of infants and children is not fully understood. We hypothesized that RSV directly induces interleukin (IL)-8 gene expression in airway epithelial cells, independent of IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) production. Exposure of A549 cells (an airway epithelial cell line) to RSV resulted in increased IL-8 mRNA expression and IL-8 protein release from the cells as early as 2 h after treatment. Neither IL-1 beta nor TNF-alpha (mRNA or protein) were detected. Viral replication was not necessary for the effects of RSV on IL-8 mRNA expression and protein release early in the infectious process. However, sustained levels of increased IL-8 production required RSV replication. A dose-response relationship was observed between the multiplicity of infection and IL-8 production with both active and nonreplicative RSV at the 2-h time point. Both active RSV and nonreplicative RSV increased the transcriptional activity of the 1.6-kb 5' flanking region of the IL-8 gene. Neither active RSV nor nonreplicative RSV increased the stability of the IL-8 mRNA in A549 cells. We conclude that RSV increases IL-8 gene expression in A549 cells in a biphasic pattern independent of viral replication early (2 h) but dependent on viral replication late (24 h).


2019 ◽  
Vol 10 (8) ◽  
pp. 893-900 ◽  
Author(s):  
M.S. Fangous ◽  
Y. Alexandre ◽  
N. Hymery ◽  
S. Gouriou ◽  
D. Arzur ◽  
...  

The spreading of antibiotic resistance is a major public health issue, which requires alternative treatments to antibiotics. Lactobacilli have shown abilities to prevent pneumonia in clinical studies when given by oral route, certainly through the gut-lung axis involvement. Rationally, respiratory administration of lactobacilli has been developed and studied in murine model, to prevent from respiratory pathogens. It allows a direct effect of probiotics into the respiratory system. To our knowledge, no study has ever focused on the effect of probiotic intra-respiratory administration to prevent from Pseudomonas aeruginosa (PA) pneumonia, a major respiratory pathogen associated with high morbidity rates. In this study, we evaluated the beneficial activity of three Lactobacillus strains (Lactobacillus fermentum K.C6.3.1E, Lactobacillus zeae Od.76, Lactobacillus paracasei ES.D.88) previously screened by ourselves and known to be particularly efficient in vitro in inhibiting PAO1 virulence factors. Cytotoxic assays in alveolar epithelial cell line A549 were performed, followed by the comparison of two lactobacilli prophylactic protocols (one or two administrations) by intra-tracheal administration in a C57BL/6 murine model of PA pneumonia. A549 cells viability was improved from 23 to 75% when lactobacilli were administered before PAO1 incubation, demonstrating a protective effect (P<0.001). A significant decrease of 2 log of PAO1 was observed 4 h after PAO1 instillation (3×106 cfu/mouse) in both groups receiving lactobacilli (9×106 cfu/mouse) compared to PAO1 group (P<0.05). One single prophylactic administration of lactobacilli significantly decreased the secretion by 50% in bronchoalveolar lavages of interleukin (IL)-6 and tumour necrosis factor-α compared to PAO1. No difference of secretion was observed for the IL-10 secretion, whatever the prophylactic study design. This is the first study highlighting that direct lung administration of Lactobacillus strains protect against PA pneumonia. Next step will be to decipher the mechanisms involved before developing this novel approach for human applications.


2020 ◽  
Vol 8 ◽  
pp. 205031212096056
Author(s):  
Rob Lambkin-Williams ◽  
Alex Mann ◽  
Adrian Shephard

Objectives: Symptoms of sore throat result from oropharyngeal inflammation, for which prostaglandin E2 is a key mediator. Flurbiprofen is a non-steroidal anti-inflammatory that provides sore throat relief. The preliminary objective of this study was to develop an in vitro model for assessing prostaglandin E2 stimulation by viral and bacterial triggers. The primary objective was to investigate the effect of diluted flurbiprofen-containing lozenges on prostaglandin E2 concentrations in stimulated cells. Methods: Prostaglandin E2 production was stimulated in three epithelial cell lines (A549, HEp2, and clonetics bronchial/tracheal epithelial) with influenza A virus (4.5 log10 tissue culture infectious dose50/mL), or bacterial lipopolysaccharide (10µ g/mL) and peptidoglycan (3µ g/mL) and incubated overnight. Prostaglandin E2 levels were assessed by enzyme-linked immunosorbent assay up to 24 h after stimulation. The effect of flurbiprofen 8.75 mg lozenges (diluted to 0.44 mg/mL) on PGE2 production in stimulated cells was assessed in parallel; prior to viral/LPS/PEP stimulation of cells, 300 μL of test product or control was added and incubated for 30 s, 2 and 5 min (and 10 min for bacterial trigger). Prostaglandin E2 levels were measured following stimulation. Results: Viral and lipopolysaccharide/peptidoglycan infection did not consistently stimulate HEp2 cells and bronchial/tracheal epithelial cells to produce prostaglandin E2. Influenza virus, and lipopolysaccharide/peptidoglycan stimulated high prostaglandin E2 concentrations in A549: mean prostaglandin E2 concentration 106.48 pg/mL with viral stimulation vs 33.82 pg/mL for uninfected cells; 83.84 pg/mL with lipopolysaccharide/peptidoglycan vs 71.96 pg/mL for uninfected cells. Flurbiprofen produced significant reductions in virus-stimulated prostaglandin E2 vs stimulated untreated cells at 2 min (p = 0.03). Flurbiprofen produced significant reductions in lipopolysaccharide/peptidoglycan-stimulated prostaglandin E2 concentrations from 30 s (p = 0.02), and at 2, 5 and 10 min (all p < 0.005) vs stimulated untreated cells. Conclusions: A549 cells provide a suitable model for assessment of prostaglandin E2 stimulation by viral and bacterial triggers. Diluted flurbiprofen-containing lozenges demonstrated rapid anti-inflammatory activity in viral- and lipopolysaccharide/peptidoglycan-stimulated A549 cells.


2011 ◽  
Vol 89 (10) ◽  
pp. 705-711 ◽  
Author(s):  
Walid Abu Arab ◽  
Rami Kotb ◽  
Marco Sirois ◽  
Éric Rousseau

Non-small cell lung cancer (NSCLC) is a major health problem. Surgery is the only potential curative treatment, in spite of the high recurrence and mortality rates. Low molecular weight heparins (LMWH) have been suggested to have a positive impact on the outcome of various cancers, mainly attributed to their anticoagulant properties; yet a direct antineoplastic effect has not been excluded. We thought to evaluate the direct effect of the LMWH enoxaparin on the human lung adenocarcinomic epithelial cell line A549 and to determine potential antiproliferative and antimetastatic effects that could guide future trials. A549 cells were cultured with different concentrations of enoxaparin (1–30 U/mL). Cell counting was performed at 24, 48, and 72 h. Detection of c-Myc protein and CD44 protein was performed by electrophoresis and Western blotting. Statistical analysis was performed using paired Student’s t tests. Cell counts were decreased with increasing concentrations and time of exposure to enoxaparin. This corresponds to decreased expression of c-Myc and CD44. In conclusion, enoxaparin displayed a direct dose and exposure duration dependent suppressor effect on A549 cell proliferation and the expression of both c-Myc and CD44 in vitro, suggesting reduced proliferative and metastatic potentials of these cells.


1997 ◽  
Vol 272 (5) ◽  
pp. L888-L896 ◽  
Author(s):  
S. Van Wetering ◽  
S. P. Mannesse-Lazeroms ◽  
M. A. Van Sterkenburg ◽  
M. R. Daha ◽  
J. H. Dijkman ◽  
...  

Neutrophils play an important role in inflammatory processes in the lung and may cause tissue injury through, for example, release of proteinases such as neutrophil elastase. In addition to neutrophil elastase, stimulated neutrophils also release small nonenzymatic and cationic polypeptides termed defensins. The aim of the present study was to investigate whether defensins induce interleukin (IL)-8 expression in cells of the A549 lung epithelial cell line and in human primary bronchial epithelial cells (PBEC). Supernatants of defensin-treated A549 cells contained increased neutrophil chemotactic activity (16-fold) that was inhibited by antibodies against IL-8. Concurrently, within 3 and 6 h, defensins significantly increased the IL-8 levels in supernatants of both A549 cells (n = 6, P < 0.05 and P < 0.01, respectively) and PBEC (n = 4, P < 0.001 and P < 0.001, respectively). This defensin-induced increase was fully inhibited by the serine proteinase inhibitor alpha 1-proteinase inhibitor. In addition, defensins also increased IL-8 mRNA levels (12-fold); this increase was dependent on de novo mRNA synthesis and did not require protein synthesis. Furthermore, defensins did not affect IL-8 mRNA stability, indicating that the enhanced IL-8 expression was due to increased transcription. Our findings suggest that defensins, released by stimulated neutrophils, stimulate IL-8 synthesis by airway epithelial cells and thus may mediate the recruitment of additional neutrophils into the airways.


2004 ◽  
Vol 287 (1) ◽  
pp. L94-L103 ◽  
Author(s):  
Yunxia Q. O'Malley ◽  
Krzysztof J. Reszka ◽  
Douglas R. Spitz ◽  
Gerene M. Denning ◽  
Bradley E. Britigan

Production of pyocyanin enhances Pseudomonas aeruginosa virulence. Many of pyocyanin's in vitro and in vivo cytotoxic effects on human cells appear to result from its ability to redox cycle. Pyocyanin directly accepts electrons from NADH or NADPH with subsequent electron transfer to oxygen, generating reactive oxygen species. Reduced glutathione (GSH) is an important cellular antioxidant, and it contributes to the regulation of redox-sensitive signaling systems. Using the human bronchial epithelial (HBE) and the A549 human type II alveolar epithelial cell lines, we tested the hypothesis that pyocyanin can deplete airway epithelial cells of GSH. Incubation of both cell types with pyocyanin led to a concentration-dependent loss of cellular GSH (up to 50%) and an increase in oxidized GSH (GSSG) in the HBE, but not A549 cells, at 24 h. An increase in total GSH, mostly as GSSG, was detected in the culture media, suggesting export of GSH or GSSG from the pyocyanin-exposed cells. Loss of GSH could be due to pyocyanin-induced H2O2formation. However, overexpression of catalase only partially prevented the pyocyanin-mediated decline in cellular GSH. Cell-free electron paramagnetic resonance studies revealed that pyocyanin directly oxidizes GSH, forming pyocyanin free radical and O2−·. Pyocyanin oxidized other thiol-containing compounds, cysteine and N-acetyl-cysteine, but not methionine. Thus GSH may enhance pyocyanin-induced cytotoxicity by functioning as an alternative source of reducing equivalents for pyocyanin redox cycling. Pyocyanin-mediated alterations in cellular GSH may alter epithelial cell functions by modulating redox sensitive signaling events.


Sign in / Sign up

Export Citation Format

Share Document